350 rub
Journal Achievements of Modern Radioelectronics №8 for 2016 г.
Article in number:
Video sequence from ceiling cameras analysis for human detection
Authors:
V.V. Khryashchev - Ph.D. (Eng.), Associate Professor, P.G. Demidov Yaroslavl State University. E-mail: vhr@yandex.ru D.V. Matveev - Post-graduate Student, P.G. Demidov Yaroslavl State University. E-mail: yar_volley@inbox.ru А.А. Lebedev - Master Student, P.G. Demidov Yaroslavl State University. E-mail: lebedevdes@gmail.com I.S. Nenakhov - Post-graduate Student, P.G. Demidov Yaroslavl State University. E-mail: zergoodsound@gmail.com
Abstract:
In the paper discusses three algorithms human detection in the video stream from dome (ceiling) cameras, which based on: motion detection, shape context and histograms of oriented gradients. Algorithm based on histograms of oriented gradients showed the best result among discusses algorithms. However, in the case of a dense arrangement of people in the area of interest these algorithms have shown insufficient results. Algorithms of human heads detection based on boosting and local binary patterns (LBP) proposed to improve the quality of the system of human detection in similar situations. Have been described the results of testing and comparing the considered algorithms. It is found that the best results are obtained by boosting algorithm. In addition, developed and researched an algorithm of post classification true positive and false positive results based on calculation of HOG-features. The application of an additional classifier was allowed to increase the rate of F-value for the algorithm based on the boosting by 6%, and for the algorithm based on LBP by 10%. The described approach can be used for solving some practical problems with the use of video analysis with ceiling cameras: detection of people in the sterile area, the detection of atypical people behavior in the area of interest, control system «smart house», statistical analysis of sporting events in the video data.
Pages: 47-55
References

 

  1. Dvorkovich V.P., Dvorkovich A.V. Cifrovye videoinformacionnye sistemy (teorija i praktika). M.: Tekhnosfera. 2012.
  2. Forsajjt D.A., Pons D. Kompjuternoe zrenie. Sovremennyjj podkhod. M.: Viljams. 2004.
  3. Szeliski R. Computer Vision: Algorithms and Applications. Springer. 2010.
  4. Lukjanica A.A., SHishkin A.G. Cifrovaja obrabotka videoizobrazhenijj. M.: Ajj EHs-EHs Press. 2009.
  5. Ko T. A Survey on behavior analysis in video surveillance for homeland security application // 37th IEEE Applied Imagery Pattern Recognition Workshop, AIPR. P. 1-8. 2008.
  6. Khryashchev V., Shmaglit L., Shemyakov A. The application of machine learning techniques to real time audience analysis system // In: Favorskaya M., Jain L.C. (eds.) Computer Vision in Control Systems-2, Intelligent Systems Reference Library. 2015. V. 75. P. 49-69.
  7. Lebedev A.A., Matveev D.V., KHrjashhev V.V. Obrabotka videopotoka s potolochnykh kamer // Cifrovaja obrabotka signalov i ee primenenie (DSPA-2015): dokl. 17-jj mezhdunar. konf. M. 2015. T. 2. S. 703-707.
  8. Matveev D.V., Lebedev A.A., KHrjashhev V.V. Razrabotka algoritmov detektirovanija obektov s potolochnykh kamer videonabljudenija // Sb. dokl. 3-jj vseros. konf. «Radioehlektronnye sredstva poluchenija, obrabotki i vizualizacii informacii (RSPOVI-2015)». M. 2015. S. 135-138.
  9. Lan T., Wang Y., Mori G., Robinovitch S. Retrieving actions in group contexts // Trends and Topics in Computer Vision. Springer. 2012. P. 181-194.
  10. Choi W., Shahid K, Savarese S. Learning context for collective activity recognition // IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2011. P. 3273-3280.
  11. Perse M., Kristan M., Kovacic S., Pers J. A trajectory-based analysis of coordinated team activity in basketball game // Computer Vision and Image Understanding. 2008. 113(5). P. 612-621.
  12. Perse M., Kristan M., Pers J., Kovacic S. A template-based multiplayer action recognition of the basketball game // ECCV Workshop on Computer Vision Based Analysis in Sport Environments. Springer. 2006. P. 71-82.
  13. Zhu Y., Nayak N., Roy-Chowdhury A. Context-aware modeling and recognition of activities in video // IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2013. P. 2491-2498.
  14. Bialkowski A., Lucey P., Carr P., Denman S., Matthews I., Sridharan S. Recognising team activities from noisy data // IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2013. P. 984-990.
  15. Belongie S., Malik J. Shape Matching and Object Recognition Using Shape Contexts // IEEE Transactions on Pattern Analysis and Machine Intelligence. April 2002. V. 24. № 24.
  16. Dalal N., Triggs B. Histograms of oriented gradients for human detection // IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2005. V. 1. P. 886-893.
  17. Priorov A.L., KHrjashhev V.V., Nikitin A.E., Matveev D.V. Analiz i modifikacija algoritmov detektirovanija peshekhodov na cifrovykh izobrazhenijakh // Radiotekhnicheskie i telekommunikacionnye sistemy. 2014. № 4 (16). S. 40-47.
  18. Jones M., Viola P. Rapid object detection using a boosted cascade of simple features // Proc. International Conference on Computer Vision and Pattern Recognition. 2001. № 1. P. 511-518.
  19. Ahonen T., Hadid A., Pietikaainen M. Face recognition with local binary patterns // Proc. 8th European Conference on Computer Vision (ECCV). 2004. P. 469-481.