350 rub
Journal Achievements of Modern Radioelectronics №12 for 2016 г.
Article in number:
Graphene based terahertz transistor
Authors:
M.V. Davidovich - Dr.Sc. (Phys.-Math.), Professor, Saratov State University
E-mail: davidovichmv@info.sgu.ru
Abstract:
The topology of graphene nanoribbons or metal quantum threads transistor are proposed and the transistor with three electrodes, connected by two nanoribbons and connected by nanowire (quantum thread) with input, is considered. The principle of the transistor is based on modulating the current by the voltage on the common contact, operating as the gate. The consideration is produced in the framework of Landauer-Datta-Lundstrom approach under the assumption of availability of equilibrium on the electrodes. The resulting parameters of the linear modeling, as well as the first members of the non-linear response of current to voltage are evaluated. The nonlinear current-versus-voltage characteristics of the graphene nanoribbon at room temperature are calculated when accounting for different mechanisms of scattering. The calculations give the symmetric (without current cutoff) I-V characteristics close at positive voltages to I-V characteristics of vacuum diode at voltages up to 3 V. The parameters of the proposed model of the amplifier, in which the graphene nanoribbon can be replaced by a metal quantum threads, have been estimated.
Pages: 18-28
References
- Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A. Electric field effect in atomically thin carbon films // Science. 2004. V. 306. P. 666-669.
- Neto C.A.H., Guinea F., Peres N.M.R., Novoselov K.S., Geim A.K. The electronic properties of graphene // Rev. Mod. Phys. 2009. V. 81.
- Geim A.K., Novoselov K.S. The rise of graphene // Nature Materials. 2007. V. 6. P. 183-191.
- Lemme M.C., Echtermeyer T.J., Baus M., Kurz H. A graphene field-effect device // IEEE ED Lett. 2007. V. 28. № 4. P. 282-284.
- Schwierz F. Graphene transistors // Nature Nanotechnology. 2010. V. 5. P. 487-496.
- Chen Z., Lin Yu-M., Rooks M. J., Avouris P. Graphene nano-ribbon electronics // Physica E: Low-dimensional Systems and Nanostructures. 2007. V. 40. № 2. P. 228-232.
- Han M.Y., Özyilmaz B., Zhang Y., Kim P. Energy band-gap engineering of graphene nanoribbons // Phys. Rev. Lett. V. 98 (20). P. 206805 (1-4).
- Svincov D.A., Vjurkov V.V., Lukichev V.F., Orlikovskijj A.A., Burenkov A., Okhsner R. Tunnelnye polevye tranzistory na osnove grafena // Fizika i tekhnika poluprovodnikov. 2013. T. 47. Vyp. 2. S. 244-250.
- Liu G., Ahsan S., Khitun A.G., LakeR.K., Balandin A.A. Graphene-based non-boolean logic circuits // J. Appl. Phys. 2013. V. 114. P. 154310 (1-10).
- Rana F. Graphene Terahertz plasmon oscillators // IEEE Trans. on Nanotechnology. 2008. V. 7. № 1. P. 91-99.
- Ragheb T., Massoud Y. On the modeling of resistance in graphene nanoribbon (GNR) for Future Interconnect Applications // Proc. IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD 2008). 2008. P. 593-597.
- Lundstrom M., Jeong C. Near-equilibrium transport: fundamentals and applications. Hackensack / New Jersey: World Scientific Publishing Company. 2013.
- Krugljak JU.A. Obobshhennaja model ehlektronnogo transporta Landauehra-Datty-Lundstroma // Nanosystems, Nanomaterials, Nanotechnologies. 2013. T. 11. № 3. S. 519-549.
- Kruglyak Yu. Landauer-datta-lundstrom generalized transport model for nanoelectronics // Journal of Nanoscience. 2014. V. 2014. Article ID 725420. P. 1-15.
- Krugljak JU.A. Nanoehlektronika «snizu - vverkh»: vozniknovenie toka, obobshhennyjj zakon Oma, uprugijj rezistor, mody provodimosti, termoehlektrichestvo // Scientific Journal «ScienceRise». 2015. T. 7. № 2 (12). S. 76-100.
- Krugljak JU.A. Grafen v transportnojj modeli Landauehra-Datty-Lundstroma // Scientific Journal «ScienceRise». 2015. T. 2. № 2 (7). C. 93-106.
- Slepyan G.Ya., Maksimenko S.A., Lakhtakia L., Yevtushenko O., Gusakov A.V. Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation // Phys. Rev. B. 1999. V. 60. P. 17136 (1-14).
- Hanson G.W. Dyadic Green-s functions and guided surface waves for a surface conductivity model of graphene // J. Applied Physics. 2008. V. 103. P. 064302 (1-8).
- Gusynin V.P., Sharapov S.G., Carbotte J.P. Magneto-optical conductivity in graphene // J. Phys.: Condens. Matter. 2007. V. 19. P. 026222 (1-28).
- Falkovsky L.A., Pershoguba S.S. Optical far-infrared properties of graphene monolayer and multilayers // Phys. Rev. 2007. V. B 76. P. 153410 (1-4).
- Falkovsky L.A., Varlamov A.A. Space-time dispersion of grapheme conductivity // Eur. Phys. J. 2007. V. B 56. P. 281-284.
- Lovat G., Hanson G.W., Araneo R., Burghignoli P. Semiclassical spatially dispersive intraband conductivity tensor and quantum capacitance of graphene // Phys. Rev. 2013. V. B 87. P. 115429 (1-11).