350 rub
Journal Achievements of Modern Radioelectronics №11 for 2016 г.
Article in number:
Method of assessment efficiency quality measurement technologies cognitive radio
Authors:
Y.V. Kolovskiy - Ph.D. (Eng.), Professor, Siberian Federal University (Krasnoyarsk) E-mail: kolovskiuv@yandex.ru
Abstract:
When facing complex phenomena that are seemingly conflicting with existing laws of nature, when taking multiple attempts to explain the phenomenon, one can realize that new beautiful and simple laws are necessary. The gap between the laws and the observed phenomena is defined as the complexity. Researchers\' are shifting from the revolution in the laws to the production of intelligent devices. We have moved from the era of the great scientific revolutions to the era of hybrid cognitive technologies. Complexity is the technical property of a system, expressed in surprising, unpredictable, inexplicable randomness of its behavior. Instead of solving the extremely complex equations we can deal with the complexity by the means of the organization of computing and (or) physical experimentation. External factors influencing the system are very important for solution of the complex engineering problems. Among such factors we can list the environment, the climate, the biosphere, as well as the human factor in relation to the experience of implementation of technological projects. Basic steps to deal with the complexity are the complexity qualimetry, the cognitive model of reduction and invariant manifolds, the search for hidden relation-ships, the criteria and the interpretation of the experiments. When a complex technical system is controlled by the means of modelling this system, it is inadequate to its intended aim because of the limited resources, unreachable isomorphism of the used model, and so forth. The given concepts clearly indicate the low reliability and limited effectiveness of the behavior of a complex technical systems, due to the unavoidable random set of internal and external factors influencing the system. The article describes the role, the principles of organization and the ways of implementing qualimetric technologies in cognitive radio communication, with the example of large-size convertible hybrid reflector antenna systems. Antenna systems perform a vital function in communication as a part of communication spacecrafts. Currently the antenna systems with diameters from 10 to 100 m, working at frequencies up to 900 GHz are being developed. The construction of a spacecraft antenna system, having high requirements for stability of geometric characteristics, have low toughness, high level of thermal, mechanical and other types of deformations. Improving the efficiency of antenna systems of a spacecraft, at all stages of the life cycle, can be reached with the means of cognitive control. In Siberian Federal University the departments of infocommunications, instrument design and nanoelectronics, the research center «Applied neuroinformatics» in cooperation with joint-stock companies SPE ISS and NPP RS develop the methodology, the software and the hardware for the means of cognitive control. The autonomous systems of cognitive control are primarily designed for the purposes of qualimetry of the radio communication systems and their life cycle as a part of a spacecraft. The laboratory sample of the surface shape change control system for the «SKIF» reflector which was designed and tested in the course of this project, can form the dynamic topograms of deviations of the actual surfaces, the units and the elements of the antenna system of the spacecraft, as well as track their mutual position in real-time. The obtained information on the geometric characteristics of the spacecraft can be used to diagnose the performance, the radio characteristics of the antenna system. This system creates a closed loop for automated reporting the characteristics of the spacecraft performance.
Pages: 248-252
References

 

  1. Kolovskijj, JU.V. Metody povyshenija tochnosti opredelenija nekruglosti krupnogabaritnykh detalejj // Metrologija. 1974. № 11. S. 11-17.
  2. Kolovskijj JU.V. Nikandrov JU.V., Truten V.A. Pribor dlja opredelenija nekruglosti detali i polozhenija osi vrashhenija planshajjby // Stanki i instrument. 1977. № 5. S. 22-24.
  3. Kolovski Y.V., Ten V.P. New developments of methods of higly precision measurements of 3-nd order deviation parameters of surface shape // Conference ITT-98. IowaStateUniversity. Ohio. USA. 1998. P. 383-387.
  4. Kolovskijj JU.V. Intellektualnye sistemy funkcionalnojj diagnostiki i upravlenija bortovymi gibridnymi zerkalnymi antennami // Tr. mezhdunar. konf. po mjagkim vychislenijam i izmerenijam. T. 2. SPb.: Izd-vo SPbGEHTU. 2003. S. 63-66.
  5. Kolovskijj JU.V., Sukharev E.N. Metod opredelenija natjazhenija setepolotna antenn na osnove raspoznavanija obrazov // Vestnik SibGAU «Aviacionnaja i kosmicheskaja tekhnika». Krasnojarsk. 2006. № 1. S. 96-100.
  6. Ivanov D.V. Kolovskijj JU.V. Multisensornaja optoehlektronnaja sistema kontrolja svojjstv poverkhnosti // EHlektronnye sredstva i sistemy upravlenija. Tomsk: V-Spektr. 2007. № 1. S. 263-265.
  7. Kolovskijj JU.V., Levickijj A.A., Marinushkin P.S. Kompjuternoe modelirovanie komponentov MEHMS // Problemy razrabotki perspektivnykh mikro- i nanoehlektronnykh sistem - 2008. Sb. nauch. trudov Vseros. nauch.-tekhn. konf. / Pod obshh. red. akad. A.L. Stempkovskogo. M.: IPPM RAN. 2008.
  8. Gorban A.N., Yablonsky G.S. Grasping complexity // Computers & Mathematics with Applications. 2013. T. 65. № 10. S. 1421-1426.
  9. Bikeev E.V., Kolovskijj JU.V. Konvergentnye tekhnologii v kognitivnojj radiosvjazi // Sistemy svjazi i radinavigacii: materialy II Vseros. nauch.-tekhn. konf. / Pod red. V.F. SHabanova. Nauchno-proizvodstvennoe predprijatie «Radiosvjaz». Krasnojarsk. 2015. S. 253-256.
  10. Kolovskijj JU.V. Metodologija kognitivnogo kontrolja povedenija slozhnykh tekhnicheskikh sistem // Slozhnye sistemy v ehkstremalnykh uslovijakh: Dokl. XVIII Vseros. simpoziuma s mezhdunar. uchastiem. Krasnojarsk: Sib. feder. un-t. 2016. S. 46.
  11. Pham D.T., Alcock R.J. Smart inspection systems: techniques and applications of intelligent vision // Academic press. 2003.
  12. Kolovskijj JU.V., Morenko P.A. Polevojj nejjroprocessor // Sovremennye problemy radioehlektroniki. Sb. nauch. tr. Krasnojarsk: IPK SFU. 2013. S. 415-420.
  13. Patrusheva T.N., Vinogradov S.A.; Kolovskijj JU.V., Makhnovskaja N.V., SHelovanova G.N., KHolkin A.I. Provodjashhie prozrachnye oksidnye penki, poluchennye ehkstakciionno-piroliticheskim metodom // KHimicheskaja tekhnologija. M.: OOO Nauka i tekhnologija. 2007. №7. S. 197-200.
  14. Aleksandrovskijj A.S., Kolovskijj JU.V., Patrusheva T.N., KHvalko A.A., KHolkin A.I. Oksidnye ljuminiscentnye materialy, poluchennye ehkstrakcionno-piroliticheskim metodom // KHimicheskaja tekhnologija. M.: OOO Nauka i tekhnologija. 2010. T. 11. № 4. S. 198-203.
  15. Patrusheva T.N., Aleksandrovskii A.S., Khval\'ko A.A., Kolovskii Yu.V., Polyushkevich A.V., Khol\'kin A.I. Luminescent oxide materials obtained by the extraction pyrolytic method // Theoretical foundations of chemical engineering. 2012. V. 46. № 4. S. 379-383.
  16. Davies E.R. Machine vision: theory, algorithms, practicalities. 3rd edition // Morgan Kaufmann. 2004.
  17. Magazinnikova A.L., Yakubov V.P. Attenuation of coherent radiation in forest regions // Microwave and optical technology letters. 1998. V. 19. № 2. S. 164-168.
  18. Kuzmenko I.JU., Fedjanin I.S., Muksunov T.R., SHipilov S EH., JAkubov V.P. SVCH-radiovidenie // EHlektronnye sredstva i sistemy upravlenija. 2014. № 1. S. 138-141.