350 rub
Journal Achievements of Modern Radioelectronics №5 for 2012 г.
Article in number:
Numerical Solution of Scattering from Random Rough Surface
Keywords:
scattering theory
Monte Carlo method
correlation function
integral equation
scattering function
Authors:
V.V. Akhiyarov
Abstract:
In this paper the solution of scattering from statistically rough surface using Monte Carlo method was considered. This method is the numerical solution of scattering from the random rough surfaces and the scattered fields statistical processing. The statistically rough surfaces with arbitrary correlation function formation technique were presented. The scattering problem solution using Fredholm integral equation of the first kind and the mean (coherent) and the fluctuation (incoherent) scattering coefficients determination method was shown. For Gaussian correlation function and gentle roughness according to the Kirchhoff approximation was obtained. If the standard deviation of the scattering surface corresponds approximately to the wavelength and the correlation interval, the back-scattering increase was observed. It is shown that the exponential correlation function leads two-scale model of the scattering surface. In this case the random fluctuations are superimposed on the Gaussian model. On the base of Weierstrass function the correlation function of multi scale surface was obtained, and scattering on multiscale surface was represented.
Pages: 3-14
References
- Басс Ф.Г., Фукс И.М. Рассеяние волн на статистически неровной поверхности. М.: Наука. 1972.
- Волосюк В.К., Кравченко В.Ф. Математические методы моделирования физических процессов в задачах дистанционного зондирования Земли // Успехи современной радиоэлектроники. 2000. №8. С.3-80.
- Ермаков С.М. Метод Монте-Карло и смежные вопросы. М.: Наука. 1975.
- Левин Б.Р.Теоретические основы статистической радиотехники. Книга первая. М.: Сов. радио. 1969.
- Wagner R.I., Song J., Chew W.C. Monte Carlo Simulation of Electromagnetic Scattering from Tow-Dimentional Random Rough Surfaces // IEEE Trans. 1997. V. AP-45. № 2. P. 235-245.
- Axline R.M., Fung Adrian K. Numerical Computation of Scattering from a Perfectly Conducting Random Surface // IEEE Trans. 1978. V. AP-26. № 3. P. 482-488.
- Fung A.K., Chen M.F. Numerical Simulation of Scattering from Simple and Composite Random Surfaces // J. Opt. Soc. Am. A. 1985. V. 2. № 12. P.2274-2284.
- Marchand R.T., Brown G.S. On the Use of Finite Surfaces in the Numerical Prediction of Rough Surface Scattering // IEEE Trans. 1999. V. AP-47. № 4. P. 600-604.
- Toporkov J.V., Awadallah R.S., Brown G.S. Issues Related to the Use of a Gaussian-Like Incident Field for Low-Grazing-Angle Scattering // J. Opt. Soc. Am. A. 1999. V. 16. № 1. P. 176-187.
- Ishimaru A. Scattering from very rough metallic and dielectric surfaces: a theory based on the modified Kirchhoff approximation // Waves in Random Media. 1991. V. 1. № 1. P. 21-34.
- Kim M.-J., Dainty J.C.,
Friberg A.T., Sant A.J. Experimental Study of Enhanced Backscattering from
One- and Two-dimensional Random Rough Surfaces //
J. Opt. Soc. Am. A. 1990. V. 7. № 4. P. 569-577. - O-Donnell K.A., Mendez E.R. Experimental Study of Scattering from Characterized Random Surfaces // J. Opt. Soc. Am. A. 1987. V. 4. № 7. P. 1194-1205.
- Johnson J.T., Tsang L., Shin R.T., Pak K., Kuga Y. Backscattering Enhancement of Electromagnetic Waves from Two-Dimentional Perfectly Conducting Random Rough Surfaces: A Comparison of Monte Carlo Simulation with Experimental Data // IEEE Trans. 1996. V. AP-44. № 5. P. 748-756.
- Ishimaru A. Backscattering Enhancement: From Radar Cross Section to Electron and Light Localization to Rough Surface Scattering // IEEE Mag. 1991. V. AP-33.№ 5. P. 7-11.
- Dwight L. J., Sun X. Scattering from fractally corru-gated surface // J. Opt. Soc. Am. A. 1990. V.7. № 6. P. 1131-1139.