350 rub
Journal Achievements of Modern Radioelectronics №6 for 2011 г.
Article in number:
Prospects for the Creation of Microwave Elements Based on Semiconducting Diamond Materials
Authors:
A.A. Altukhov, A.S. Bugaev, Yu.V. Gulyaev, K.N. Zyablyuk, A.Yu. Mityagin, G.V. Chucheva
Abstract:
Аn overview of the prospect for semiconductor microwave elements based on diamond materials is provided. The unique of diamond properties compared to other semiconductor materials for the design and the development of advanced electronic devices in the microwave range, which can find broad application in communication devices, ultra high frequency components avionics and on-board radiolocation complexes. A brief analysis of diamond diodes is produced. Unique properties of the semiconductor diamond give hope, that diamond diodes at smaller sizes will work in a wider range of parameters compared with the samples on the basis of Si, SiC, GaN. For example, the diamond Schottky diode of the p+-i-M-type with the multilayer structure according to their characteristics much higher than uniformly doped SiC diodes, and at voltages up to 3 kV to compete with diodes based on GaN. In detail the most promising diamond field-effect transistors with surface channel on the basis of the hydrogen and transistors with -channel, doped boron, are discussed. A critical factor in determining the reliability of the diamond surface channel transistor based on hydrogen is a long-term operation of H-surfaces. The disadvantages of these transistors are: 1) the instability of their work and 2) the degradation of conducting channel at elevated temperatures. For the stable operation of the transistor used the H-channel passivation by the layers Al2O3, CaF2, SiN, SiO. Technology for manufacturing transistors with an H-surface is relatively simple. When optimizing of the design we can expect the current density to 1 A/mm at gate length 0.1 m, the specific power of a few of W/mm at the working frequencies of several tens of GHz. The achieved power of diamond transistor with -channel, doped boron, was amounted 2.1 W/mm at a bias of 20 V, and it was obtained without the field plate or the hollow gate. This value is between the values for GaAs and GaN. Calculations show, that for the diamond field-effect transistor, based on the -doped boron layer with a thickness of less than 1 nm with a boron concentration exceeding 1020 cm-3 in a configuration with a field plate in the optimum performance, the maximum power density in the radio range can reach 75 W/mm. This value is 2 times higher than a record power density, resulting in transistors based on GaN. It is noted that the prospect of the wider development of such devices is determined by the design and the development of the new nanometer technology.
Pages: 3-18
References
  1. BalmerR.S., etal. Chemical vapour deposition synthetic diamond: materials, technology and applications // J. Phys.: Condensed Matter. 2009. V.21. P.364221-1-23.
  2. Wort C.J.H., Balmer R.S. Diamond as an electronic material //Material Today. 2008. V.11. P.22-28.
  3. Kohn E., Denisenko A.Concepts for diamond electronics // Thin solid films.2007. V.515. P.4333-4339.
  4. Prins J.F. Bipolar transistor action in ion implanted diamond // Appl. Phys. Lett. 1982. V.41. P.950-952.
  5. Aleksov A., Denisenko A., Kohn E.First epitaxial pnp bipolar transistor on diamond with deep nitrogen donor // IEEE Electronics Lett. 1999. V.35. P.1777-1779.
  6. Kone S., Civrac G., Schneider H.. Isoird K., Issaoui R., Achard J., Gicquel A.CVD diamond Schottky barrier diode, carrying out and characterization // Diamond and Related Materials. 2010. V.19. P.792-795.
  7. Kubovic M., El-Hajj H., Butler J.E., Kohn E. Diamond merged diode // Diamond and Related Materials. 2007. V.16. P.1033-1037.
  8. Umezawa H., Mokuno Y., Yamada H., Chayahara A., Shikata S.-i. Characterization of Schottky barrier diodes on a 0.5-inch single-crystalline CVD diamond wafer // Diamond and Related Materials. 2010. V.19. P.208-212.
  9. Kumaresan R., Umezawa H., Tatsumi N., Ikeda K., Shikata S.Device processing, fabrication and analysis of diamond pseudo-vertical Schottky barrier diodes with low leak current and high blocking voltage // Diamond and Related Materials. 2009. V.18. P.299-302.
  10. Twitchen D.J., Whitehead A.J., Coe S.E., Isberg J., Hammersberg J., Wikstrom T., Johansson E. High-Voltage Single-Crystal Diamond Diodes // IEEE Transactions on Electron Devices.2004. V.51. P.826-828.
  11. Denisenko A., Kohn E.Diamond power devices. Concepts and limits // Diamond and Related Materials. 2005. V.14. P.491-498.
  12. Makino T., Tanimoto S., Hayashi Y., Kato H., Tokuda N., Ogura M., Takeuchi D., Oyama K., Ohashi H., Okushi H., Yamasaki S. Diamond Schottky-pn diode with high forward current density and fast switching operation // Applied Physics Letters. 2009. V.94. P.262101-1-3.
  13. Oyama K., Kato S.-G., Ri H., Ogura M., Makino T., Takeuchi D., Tokuda N., Okushi H., Yamasaki S. High performance of diamond p+-i-n+ junction diode fabricated using heavily doped p+ andn+ layers // Applied Physics Letters. 2009. V.94. P.152109-1-2.
  14. Landstrass M.I, Ravi K.V. Ravi Resistivity of chemical vapor deposited diamond films // Applied Physics Letters. 1989. V.55. P.975-977.
  15. Kubovic M., Kasu M., Kageshima H. Sorption properties of NO2gas and its strong influence on hole concentration of H-terminated diamond surfaces // Applied Physics Letters. 2010. V.96. P.052101-1-3.
  16. Foord J.S., Lau C.H., Hiramatsu M., Jackman R.B.,Nebel C.E., BergonzoP. Influence of the environment on the surface conductivity of chemical vapor deposition diamond // Diamond and Related Materials. 2002. V.11. P.856-860.
  17. Rezek B., Watanabe H., Nebel C.E. High carrier mobility on hydrogen terminated <100> diamond surfaces // Applied Physics Letters.2006. V.88. P.042110-1-3.
  18. Kawarada H., Aoki M., Ito M. Enhancement mode metal-semiconductor field effect transistors using homoepitaxial diamonds // Applied Physics Letters. 1994. V.65. P.1563-1565.
  19. Calvani P., Corsaro A.,Girolami M., Sinisi F., Trucchi D.M., Rossi M.C., Conte G., Carta S., Giovine E., Lavanga S., Limiti E., Ralchenko V. DC and RF performance of surface channel MESFETs on H-terminated polycrystalline diamond // Diamond and Related Materials. 2009. V.18. P.786-788.
  20. Kueck D., El-Hajj H., Kaiser A., Kohn E. Surface-channel MESFET with boron-doped contact layer // Diamond and Related Materials. 2008. V.17. P.732-735.
  21. Sicignano F., Vellei A., Rossi M.C., Conte G., Lavanga S., Lanzieri C., Cetronio A.,Ralchenko V. MESFET fabricated on deuterium-implanted polycrystalline diamond // Diamond and Related Materials. 2007. V.16. P.1016-1019.
  22. Kubovic M., Janischowsky K., Kohn E. Surface channel MESFETs on nanocrystalline diamond // Diamond and Related Materials. 2005. V.14. P.514-517.
  23. Kubovic M., Kasu M., Kallfass I., Neuburger M., Aleksov A., Koley G., Spencer M.G., Kohn E.Microwave performance evaluation of diamond surface channel FETs // Diamond and Related Materials. 2004. V.13. P.802-807.
  24. Aleksov A., Denisenko A., Spitzberg U., Jenkins T., Ebert W., Kohn E. RF performance of surface channel diamond FETs with sub-micron gate length // Diamond and Related Materials. 2002. V.11. P.382-386.
  25. Hokazono A., Ishikura T., Nakamura K., Yamashita S., Kawarada H. Enhancement/depletion MESFETs of diamond and their logic circuits // Diamond and Related Materials.1997. V.6. P.339-343.
  26. Kubovic M., Kasu M., Yamauchi Y., Ueda K., Kageshima H. Structural and electrical properties of H-terminated diamond field-effect transistor // Diamond and Related Materials. 2009. V.18. P.796-799.
  27. Kasu M., Ueda K., Kageshima H., Yamauchi Y. Gate interfacial layer in hydrogen-terminated diamond field-effect transistors // Diamond and Related Materials. 2008. V.17. P.741-744.
  28. Kasu M., Ueda K., Yamauchi Y., Tallaire A., Makimoto T. Diamond-based RF power transistors: Fundamentals and applications // Diamond and Related Materials. 2007. V.16. P.1010-1015.
  29. Ueda K., Kasu M., Yamauchi Y., Makimoto T., Schwitters M., Twitchen D.J., Scarsbrook G.A., Coe S.E. Characterization of high-quality polycrystalline diamond and its high FET performance // Diamond and Related Materials. 2006. V.15. P.1954-1957.
  30. Kasu M., Ueda K., Ye H., Yamauchi Y., Sasaki S., Makimoto T. High RF output power for H-terminated diamond FETs // Diamond and Related Materials. 2006. V.15. P.783-786.
  31. Kasu M., Ueda K., Ye H., Yamauchi Y., Sasaki S., Makimoto T. 2W/mm output power density at 1 GHz for diamond FETs // IEEE Electronics Letters. 2005. V.41. P.1249-1250.
  32. Ueda K., Kasu M., Yamauchi Y., Makimoto T., Schwitters M., Twitchen D.J., Scarsbrook G.A., Coe S.E. Diamond FET Using High-Quality Polycrystalline Diamond With fTof 45 GHz and fmaxof 120GHz // IEEE Electron Device Letters. 2006. V.27. P.570-572.
  33. Taniuchi H., Umezawa H., Arima T., Tachiki M., Kawarada H. High-Frequency Performance of Diamond Field-Effect Transistor // IEEE Electron Device Letters. 2001. V.22. P.390-392.
  34. Gluche P., Aleksov A., Vescan A., Ebert W., Kohn E. Diamond Surface-Channel FET Structure with 200V Breakdown Voltage // IEEE Electron Device Letters. 1997. V.18. P.547-549.
  35. Matsudaira H., Miyamoto S., Ishizaka H., Umezawa H., Kawarada H. Over 20-GHz Cutoff Frequency Submicrometer-Gate Diamond MISFETs // IEEE Electron Device Letters. 2004.
    V.25. P.480-482.
  36. Hirama K., Miyamoto S., Matsudaira H., Yamada K., Kawarada H., Chikyo T., Koinuma H., Hasegawa K., Umezawa H. Characterization of diamond metal-insulator-semiconductor field-effect transistors with aluminum oxide gate insulator //Applied Physics Letters. 2006. V.88. P.112117-1-3.
  37. Kueck D., Schmidt A., Denisenko A., Kohn E. Analysis of passivated diamond Surface Channel FET in Dual-Gate Configuration - localizing the surface acceptor // Diamond and Related Materials. 2010. V.19. P.166-170.
  38. Kueck D., Jooss S., Kohn E. Technology of passivated surface channel MESFETs with modified gate structures // Diamond and Related Materials. 2009. V.18. P.1306-1309.
  39. Hirama K., Takayanagi H., Yamauchi S., Yang J.H., Umezawa H., Kawarada H. Channel mobility evaluation for diamond MOSFETs using gate-to-channel capacitance measurement // Diamond and Related Materials. 2008. V.17. P.1256-1258.
  40. Madaleno J.C., Pereira L., Lavareda G., Cabral G., Carvalho N., Amaral A., Titus E., Coelho M.C., Gracio J. A MIS transistor using the nucleation surface of polycrystalline diamond // Diamond and Related Materials. 2008. V.17. P.768-771.
  41. Miyamoto S., Matsudaira H., Ishizaka H., Nakazawa K., Taniuchi H., Umezawa H., Tachiki M., Kawarada H. High performance diamond MISFETs using CaF2 gate insulator // Diamond and Related Materials. 2003. V.12. P.399-402.
  42. Ishizaka H., Umezawa H., Taniuchi H., Arima T., Fujihara N., Tachiki M., Kawarada H. DC and RF characteristics of 0.7-mm-gate-length diamond metal-insulator-semiconduc­tor field effect transistor // Diamond and Related Materials. 2002. V.11. P.378-381.
  43. Tsugawa K., Kitatani K., Noda H., Hokazono A., Hirose K., Tajima M., Kawarada H. High-performance diamond surface-channel field-effect transistors and their operation mechanism // Diamond and Related Materials. 1999. V.8. P.927-933.
  44. Werner M., Job R., Zaitzev A., Faiirne W. R., Seifert W., Johnston C., Chalke P.R.The Relationship between Resistivity and Boron Doping Concentration of Single and Polycrystalline Diamond // Physica Status Solidi A. 1996. V.154. P.385-393.
  45. Volpe P.-N.,Pernot J.,Muret P., Omnes F. High hole mobility in boron doped diamond for power device application // Applied Physics Letters. 2009. V.94. P.092102-1-3.
  46. Shiomi H., Nishibayashi Y., Toda N., Shikata S.-i. Pulse-Doped Diamond P-Channel Metal Semiconductor Field-Effect Transistor // IEEE Electron Device Letters. 1995. V.16. P.36-38.
  47. Vescan A., Gluche P., Ebert W., Kohn E. High-Temperature, High-Voltage Operation of Pulse-Doped Diamond MESFET // IEEE Electron Device Letters. 1997. V.18. P.222-224.
  48. Aleksov A., Kubovic M., Kaeb N., Spitzberg U., Bergmaier A., Dollinger G., Bauer Th., Schreck M., Stritzker B., Kohn E. Diamond diodes and transistors // Diamond and Related Materials. 2003. V.12. P.391-398.
  49. Aleksov A., Vescan A., Kunze M., Gluche P., Ebert W., Kohn E., Bergmaier A., Dollinge G. Diamond junction FETs based on d-doped channels // Diamond and Related Materials. 1999.
    V.8. P.941-945.
  50. Aleksov A., Denisenko A., Kunze M., Vescan A., Bergmaier A., Dollinger G., Ebert W.,Kohn E. Diamond diodes and transistors // Semicond. Sci. Technol. 2003. V.18. P.S59-S66.
  51. El-Hajj H., Denisenko A., Kaiser A., Balmer R.S., Kohn E. Diamond MISFET based on boron delta-doped channel // Diamond and Related Materials. 2008. V.17. P.1259-1263.
  52. Denisenko A., Bergmaier A., Dollinger G., Kubovic M., Kohn E. Characteristics of boron δ-doped diamond for electronic applications // Diamond and Related Materials. 2008. V.17. P.409-414.
  53. Wu Y.-F., Saxler A., Moore M., Smith R.P., Sheppard S., Chavarkar P.M., Wisleder T., Mishra U.K., Parikh P. 30-W/mm GaN HEMTs by Field Plate Optimization // IEEE Electron Device Letters. 2004. V.25. P.117-119.