350 rub
Journal Achievements of Modern Radioelectronics №9 for 2010 г.
Article in number:
Parabolic Equation Method in the Diffraction Theory
Authors:
V.V. Akhiyarov
Abstract:
In this work the scalar diffraction problems solution using parabolic equation (PE) is considered. The reduction of initial Helmholtz equation to standard PE, valid in paraxial approach, is stated. All necessary PE for forward and backward propagation in free space and medium with refraction are shown. The algorithm of PE numerical solution based on Fourier split-step transform is presented. Various truncation methods are discussed: the absorbing and perfectly matched layers, and recommendations for their use are given. It is shown, that perfectly atched layer can be viewed as a lossy medium and so it is equal to Hanning window usage as for the absorbing layer. Half-plane diffraction for the directional radiation and forward and backward propagation is presented. That allows modeling not only the diffraction field, but also reflections from the half-plane. It is shown, that PE method corresponds with Young and Fresnel ideas about the diffraction effect. The diffraction problem solution for the radio wave propagation above the earth surface with the Dirichlet boundary condition is considered. Comparison with calculations using V.A. Fock diffraction formula for the surface with real electri-cal parameters is produced. This calculation shows that the Dirichlet boundary condition is quite suitable for path loss prediction in VHF range.
Pages: 72-80
References
  1. Власов С.Н., Таланов В.И. Параболическое уравнение в теории распространения волн (к 50-ти летию первой публикации) // Изв. вузов. Сер. Радиофизика. 1995. Т.XXXVIII. № 1 - 2. С.3 - 19.
  2. Gilbert K. E., Xiao Di An exact point source starting field for the Fourier parabolic equation in outdoor sound propagation // J. Acoust. Soc. Am. 2007. V.121. No. 5. P. 203-210.
  3. Zaporozhets A.A., Levy M.F. Bistatic RCS calculations with the vector parabolic equation method // IEEE Trans. 1999. V. AP-47. No. 11. P. 1688-1696.
  4. Levy М.F. Parabolic equation method for electromagnetic wave propagation. London. IEE. 2000.
  5. Ozgun O. Recursive two-way parabolic equation approach for modeling terrain effects in tropospheric propagation // IEEE Trans. 2009. V. AP-57. No. 9. P. 2706-2714.
  6. Kuttler J.R. Differences between the narrow-angle and wide-angle propagators in the split-step fourier solution of the parabolic wave equation // IEEE Trans. 1999. V. AP-47. No. 7. P. 1131-1140.
  7. Sevgi L., Uluisik C., Akleman F. A MATLAB-based two-dimensional parabolic equation radiowave propagation package // IEEE Antennas and Propagation magazine. 2005. V. 47. Nо.4. P.164 - 175.
  8. Ахияров В.В. Методы численного решения задачи дифракции радиоволн над земной поверхностью // Электромагнитные волны и электронные системы. 2010. Т.15. № 3. С.39 - 46.
  9. Dockery G.D.Modeling electromagnetic wave propagation in the troposphere using the parabolic equation // IEEE Trans. 1988. V. AP-36. No. 10. P. 1464-1470.
  10. Barrios A.E. A terrain parabolic equation model for propagation in the troposphere // IEEE Trans. 1994. V. AP-42. No. 1. P. 90-98.
  11. Попов А.В. К расчету параксиальных волновых полей с использованием граничных условий прозрачности // Журнал вычилительной математики и математической физики. 2006. Т. 46. № 9. С.1675-1681.
  12. Levy M.F. Transparent boundary conditions for parabolic equation solutions of radiowave propagation problems // IEEE Trans. 1997. V. AP-45. No. 1. P. 66-72.
  13. Акулиничев Ю.П., Абрамов П.В., Ваулин И.Н. Влияние поглощающего слоя на численное решение параболического уравнения // Докл. ТУСУРа. 2007. №2 (16). С.139-145.
  14. Berenger J.-P. A perfectly matched layer for the absorption of electromagnetic waves // Journal of Computation Physics. 1994. 114. P.185-200.
  15. Levy M. Perfectly matched layer truncation for parabolic wave equation models // Proc. the Royal Society. 2001. P. 2609-2624.
  16. Андреев Г.А. Дифракция при распространении пучка миллиметровых волн на затененной трассе // Радиотехника и электроника. 1996. Т.41. №12. С.1442 - 1447.
  17. Малюжинец Г.Д. Развитие представлений о явлениях дифракции // Успехи физических наук. 1959. №10. С.321-334.
  18. Фок В.А. Проблемы дифракции и распространения электромагнитных волн. М.: Сов. радио. 1970.