350 rub
Journal Achievements of Modern Radioelectronics №8 for 2010 г.
Article in number:
Research of dependence of amplitude of parametrical oscillations of nonlinear resonator from amplitude and frequency of rating
Keywords:
the nonlinear resonator
nonlinear parametrical zone (pazone) system (NPS)
parametrical resonance
the higher harmonics
the higher zones of instability of oscillations
approximation by hyperbolic sine
resonant contour
the series of Fourier
rating signal
attenuation of resonant contour
amplitude-frequency characteristics
excitation zones
amplitude parities
Authors:
L. V. Cherkesova
Abstract:
One of objects of research within the limits of the theory of nonlinear oscillations are laws and appropriateness of parametrical resonance in the higher zones of instability of oscillations. Researches on increase of speed and efficiency of modulation of parametrical systems go in several directions, but perspective direction in creation of electronic means of the future is elaboration of devices on the basis of the resonant schemes, working on the higher harmonics in the higher zones not-stability of oscillations. This question is insufficiently studied.
In earlier published works devoted to this question were considered amplitude-and-frequency characteristics of the nonlinear resonator - nonlinear parametrical zone (pazone) system, working in I and II zones of parametrical excitation of oscillations, in a mode of the first and second resonances, that is only in the two first zones of instability of Matier. Interest is represented by researches of processes in the higher zones of instability of oscillations to which earlier it was not given sufficient attention. In offered article the general equations and formulas for the analysis of the nonlinear oscillatory systems functioning in any zone of parametrical excitation with number, where are received. It is established that nonlinear parametrical zone system can generate the higher harmonics at small enough attenuation. The system attenuation less, the more number of zones of excitation it is, and that raised oscillations have the big amplitude. The more strongly nonlinearity, the is more quantity of zones of excitation and the richer a choice of harmonics in which projected and designing devices on the basis of nonlinear parametrical zone systems can work. Analyzing the results received in article, it is possible to draw a conclusion that nonlinear parametrical zone system can generate the higher harmonics at small enough attenuation. The received amplitude parities and curves of dependences also are suitable for the analysis of oscillations in any zone of instability (excitation) with number n. It is shown that with other conditions being equal, in strongly nonlinear parametrical zone system (from the curve of magnetization close to rectangular), exists more number of zones of excitation of the higher harmonics, in which oscillations, than in weak nonlinear NPS (from not rectangular curve of magnetization) are possible. The attenuation of NPS is less, the more number of zones of excitation, in which oscillations (the more number of harmonics are possible can be excited) the raised oscillations (harmonic) have bigger amplitude. In strongly nonlinear system oscillation cease to be raised and disappear at attenuation more considerably, than in weak nonlinear NPS. The more strongly nonlinearity, the more zones of excitation and the richer a choice of harmonics in which the projected and designing device can work.
Thus, the amplitude parities, received in given work and dependence for reception of amplitude and amplitude-frequency characteristics of NPS can be used at the analysis and designing of nonlinear oscillatory systems - parametrical generators and modulators, counting and logic units, etc. on the basis of nonlinear-parametrical zone systems, working in the higher zones of instability of oscillations.
Pages: 3-12
References
- Чередников П. И. Расчет и проектирование параметрических систем на высших гармониках. Харьков: ХПИ. 1980.
- Черкесова Л. А., Подгайко О. И. Моделирование нелинейно-параметрических систем. Новочеркасск: Изв. вузов. Электромеханика. 2006.
- Черкесова Л. В. Обзор современного состояния применения нелинейно-параметрических зонных резонаторов в электронной аппаратуре и перспективы их дальнейшего развития в XXIвеке // Успехи современной радиоэлектроники. 2009. № 12. С. 5 - 24.
- Булгаков Б. М., Степанов В. П., Чередников П. И. К вопросу надежности и быстродействия параметронов на второй гармонике // Радиотехника. Харьков: ХГУ. 1973. № 26. С. 133-136.
- Зуев Н. Г., Титаренко А. М., Чередников П. И. Исследование нелинейных колебательных систем, работающих в первой и высших зонах параметрической неустойчивости. // Тезисы докл. 3-й Всесоюзн. научн. техн. конф. «Проблемы нелинейной электротехники». Ч. 1. Киев. 1988. С. 56.
- Булгаков Б. М., Чередников П. И, Степанов В. П. Исследование параметрического усилителя-модулятора // Радиотехника и электроника. 1974. № 8. С. 1674-1680.
- Зуев Н. Г., Титаренко А. М., Чередников П. И. О характеристиках параметрических систем, работающих на высших гармониках. Харьков. ХИРЭ. 1985. Деп. УкрНИИНТИ 17.12.85 № 2771 Ук 85.
- Ефимов Ю. Н. Исследование условий самовозбуждения параметрона с переменной индуктивностью // Радиотехника. 1962. Т. 5. № 3. С. 347-355.
- Черкесова Л. В. Аппроксимация характеристик нелинейных элементов параметрических преобразователей в высших зонах неустойчивости колебаний // Вестник Донского государственного технического университета. 2009. № 4 (43). С. 599-613.
- Шмидт Г. Параметрические колебания. М.: Мир. 1978.
- Подгайко О. И., Чередников И. П., Чередников П. И., Черкесова Л. В. Анализ характеристик нелинейных систем в высших зонах неустойчивости // Изв. вузов. Электромеханика. Межвуз. сб. науч. трудов. Новочеркасск: Изд. Южно-Рос. ГТУ. 2000. № 4. С. 23-26.
- Титаренко А. М. Анализ параметрически возбуждаемой нелинейной автоколебательной системы / Харьков: Основа. ХГУ. Радиотехника94/91. 1990. С. 32-38.