350 rub
Journal Achievements of Modern Radioelectronics №4 for 2010 г.
Article in number:
Use of Neural Networks for Definition of Modulation Type
Keywords:
radiomonitoring
neural network of counter propagation (learning vector quantization)
definition of modulation type
parametrically undefined signal
Authors:
A. V. Kuzovnikov
Abstract:
Prospects of development of systems of radiomonitoring consist in introduction of new methods of digital processing, which will allow in an automode (without participation of the operator) to spend processing for the purpose of determination of structural parametres of input signals. In this article the question of automatic determination of type of modulation of parametrically undefined signal is considered. The analysis of possibility of use of neural networks for the assigned task decision is passed. The analysis of various types of neural networks has allowed to reveal the most effective structure of a neural network for classification of modulation of an input signal. Results of modelling of a neural network of counter propagation have shown high efficiency of use of the given type of a neural network which is expressed in high probability of correct detection of an input signal. For determination of a terminal conditions of applicability of a neural network of counter propagation numerical modelling has been spent. Results of modelling have shown, what even for low- energy BPSK signal with a signal/noise ratio the minus 50 dB at increment the number of neurons with 10 to 200 probability of correct detection is increment from 20 % to 70 %. Imperfection at use of neural networks is big enough demanded operation speed of digital system of processing
Pages: 64-67
References
- Афанасьевский В.Б., Корнев С.Ф., Бойко О.А. Методы оценки параметров и определения типа модуляции сигналов цифровой системы связи // ЗАО «АВТЭКС СПб». 2005.
- Кузовников А.В., Демаков Н.В., Анжина В.А., Пашков А.Е.Современные проблемы радиоэлектроники: Сб. науч. трудов / под ред. А.И. Громыко, А.В. Сарафанова. Красноярск. 2008. С. 377-380.
- Taira S. and Murakami E. Automatic classification of analogue modulation signals by statistical parameters // Proc. IEEE MILCOM. 1999. Р. 202-206.
- Шахтарин Б.И. Обнаружение сигналов. М.: Гелиос АРВ. 2006.
- Пантюхин Д.В. Распознавание типа модуляции радиосигнала с помощью
нейронной сети // Труды 6-й Междунар. конф.
DSPA-2004. Т. 1. СПб. 2004. - Граковский А., Александров А., Кивленок Р. Разведочный анализ сигналов с помощью фрактальной размерности // Transport and Telecommunication. 2004. V. 5. Nо. 2. Р. 118-124.
- Хохлов В.К. Обнаружение, распознавание и пеленгация объектов в ближней локации. М.: МГТУ им. Н.Э. Баумана. 2005.
- Медведев В.С., Потемкин В.Г. Нейронные сети. MATLAB 6. М.: ДИАЛОГ-МИФИ. 2002.
- Уосерман Ф. Нейрокомпьютерная техника. Теория и практика. М.: Мир. 1992.