350 rub
Journal №3 for 2015 г.
Article in number:
Inhibitors of DNA repair enzymes as prototypes of medicinal preparations
Authors:
A.L. Zakharenko -Ph.D.(Chem.), Research Scientist, Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (Novosibirsk). E-mail: sashaz@niboch.nsc.ru N.I. Rechkunova - Ph.D.(Chem.), Senior Research Scientist, Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (Novosibirsk); Associate Professor, Novosibirsk State University (Novosibirsk). E-mail: nadyarec@niboch.nsc.ru O.I. Lavrik - Dr.Sc.(Chem.), Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (Novosibirsk); Professor, Novosibirsk State University (Novosibirsk). E-mail: lavrik@niboch.nsc.ru
Abstract:
The DNA damage response, consisting of an organized network of proteins implementing repair and cell cycle arrest has arisen during the evolution to keep the cell viability and to prevent the damaged DNA transfer to daughter cells. The DNA damage response is dysregulated in cancer cells with some pathways being up-regulated and others down-regulated or lost. Up-regulated pathways can confer resistance to anti-cancer DNA damaging agents. Therefore, inhibition of key enzymes of these pathways could prevent this therapeutic resistance. Vice-versa, defects in an individual DNA damage response pathway may lead to dependence on a complementary pathway. Inhibition of this complementary pathway may result in tumor-specific cell killing. Thus, inhibitors of the DNA damage response have the potential to increase the efficacy of chemotherapy and radiotherapy and have single-agent activity against tumors with a specific DNA damage response defect. Poly(ADP-ribose)polymerase 1 (PARP1) is the enzyme involved in multiple cellular processes such as transcription, replication, DNA repair and cell death. PARP1 is regarded as a promising target in cancer therapy. There are 8 PARP1 inhibitors in clinical trials today, both as monotherapy, and in combination with other anticancer drugs [1]. There exists a problem of PARP1 selectivity. This enzyme is a member of the family consisting of 17 proteins containing conserved catalytic domain. Recent studies revealed that many of the best-known inhibitors suppressed the activity of several PARP family members [2]. Therefore it is of interest the search of selective inhibitors of PARP2, another DNA repair factor. This enzyme is involved in lesser row of processes than PARP1, allowing to expect creation of pharmaceuticals which selectively suppresses DNA repair but doesn-t affect other PARP1 functions. Another promising therapeutic target is tyrosyl-DNA phosphodiesterase 1 (Tdp1), - recently discovered enzyme that catalyzes the hydrolysis of 3′-phosphotyrosyl bonds. Tdp1 has been implicated in the repair of irreversible Top1-DNA covalent complexes, which can be generated by either exogenous or endogenous factors. Top1-DNA covalent adducts are normal transition state in the catalytic cycle of Top1 but may be stabilized by DNA damage or anticancer drugs such as camptothecin By reducing the repair of Top1-DNA lesions, Tdp1 inhibitors can potentially increase the anticancer activity of Top1 inhibitors. Targeting the DNA repair is a promising strategy for cancer therapy, both to reduce resistance to DNA damaging anti-cancer therapy and also to specifically target defects in the DNA damage response.
Pages: 26-44
References

 

  1. Hosoya N., Miyagawa K. Targeting DNA damage response in cancer therapy // Cancer Sci. 2014. V. 105. № 4. P. 370-388.
  2. Wahlberg E., Karlberg T., Kouznetsova E., Markova N., Macchiarulo A., Thorsell A.G., Pol E., Frostell Å., Ekblad T., Öncü D., Kull B., Robertson G.M., Pellicciari R., Schüler H., Weigelt J. Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. // Nat. Biotechnol. 2012. V. 30.№ 3. P. 283 - 288.
  3. Stratton M.R., Campbell P.J., Futreal P.A. The cancer genome // Nature. 2009. V. 458. № 7239. P. 719-724.
  4. Sykora P., Wilson III D.M., Bohr V.A. Base excision repair in the mammalian brain: Implication for age related neurodegeneration // Mech. Ageing Dev. 2013. V. 134. № 10. P. 440-448.
  5. Virag L., Szabo C. The Therapeutic Potential of Poly(ADP-Ribose) Polymerase Inhibitors // Pharmacol. Rev. 2002. V. 54. № 3. P. 375 - 429.
  6. Shukla P.C., Singh K.K., Yanagawa B., Teoh H., Verma S. DNA damage repair and cardiovascular diseases. // Can. J. Cardiol. 2010. V. 26. Suppl. A. P. 13A-16A.
  7. Hottiger M.O., Hassa P.O., Luscher B., Schuler H., Koch-Nolte F. Toward a unified nomenclature for mammalian ADP-ribosyltransferases  // Trends Biochem. Sci. 2010. V. 35. № 4. P. 208-219.
  8. D\'Amours D., Desnoyers S., D\'Silva I., Poirier G.G. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions // Biochem. J. 1999. V. 342. № Pt 2. P. 249 - 268.
  9. Woodhouse B.C., Dianov G.L. Poly ADP-ribose polymerase-1: an international molecule of mystery // DNA Repair. 2008. V. 7. № 7. P. 1077-1086.
  10. Ferraris D.V. Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic // J. Med. Chem. 2010. V. 53. № 12. P. 4561 - 4584. 
  11. Chow J.P., Man W.Y., Mao M., Chen H., Cheung F., Nicholls J., Tsao S.W., Li Lung M., Poon R.Y. PARP1 is overexpressed in nasopharyngeal carcinoma and its inhibition enhances radiotherapy // Mol. Cancer Ther. 2013. V. 12. № 11. P. 2517-2528.
  12. Curtin N.J., Szabo C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond // Mol. Aspects Med. 2013. V. 34. № 6. P. 1217-1256. 
  13. Bryant H.E., Schultz N., Thomas H.D., Parker K.M., Flower D., Lopez E., Kyle S., Meuth M., Curtin N.J., Helleday T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase // Nature. 2005. V. 434. № 7035. P. 913-917.
  14. Farmer H., McCabe N., Lord C.J., Tutt A.N., Johnson D.A., Richardson T.B., Santarosa M., Dillon K.J., Hickson I., Knights C., Martin N.M., Jackson S.P., Smith G.C., Ashworth A. Targeting the DNA repair defectin BRCA mutant cells as a therapeutic strategy // Nature. 2005. V. 434. № 7035. P. 917-921.
  15. Schuler H, Ziegler M. Pharmacology of ADP-ribosylation // FEBS J. 2013. V. 280. № 15. P. 3542.
  16. Ekblad T., Camaioni E., Schuler H., Macchiarulo A. PARP inhibitors: polypharmacology versus selective inhibition // FEBS J. 2013. V. 280. № 15. P. 3563-3575.
  17. Mangerich A., Bürkle A. How to kill tumor cells with inhibitors of poly(ADP-ribosyl)ation // Int. J. Cancer. 2011. V. 128. № 2. P. 251-265.
  18. Murai J., Huang S.Y., Das B.B., Renaud A., Zhang Y., Doroshow J.H., Ji J., Takeda S., Pommier Y. Trapping of PARP and PARP2 by Clinical PARP Inhibitors // Cancer Res. 2012. V. 72. № 21. P. 5588-5599.
  19. Mantha A.K., Sarkar B., Tell G. A short review on the implications of base excision repair pathway for neurons: Relevance to neurodegenerative diseases // Mitochondrion. 2014. V. 16. P. 38-49.
  20. Chen A. PARP inhibitors: its role in treatment of cancer // Chin. J. Cancer. 2011. V. 30. № 7. P. 463-471.
  21. Madison D.L., Stauffer D., Lundblad J.R. The PARP inhibitor PJ34 causes a PARP1-independent, p21 dependent mitotic arrest // DNA Repair. 2011. V. 10. № 10. P. 1003-1013.
  22. Liu X., Shi Y., Maag D.X., Palma J.P., Patterson M.J., Ellis P.A., Surber B.W., Ready D.B., Soni N.B., Ladror U.S., Xu A.J., Iyer R., Harlan J.E., Solomon L.R., Donawho C.K., Penning T.D., Johnson E.F., Shoemaker A.R. Iniparib nonselectively modifies cysteine-containing proteins in tumor cells and is not a bona fide PARP inhibitor // Clin. Cancer Res. 2012. V.18. № 2. P. 510-523.
  23. Patel A.G., De Lorenzo S.B., Flatten K.S., Poirier G.G., Kaufmann S.H. Failure of iniparib to inhibit poly(ADP-Ribose) polymerase in vitro // Clin. Cancer. Res. 2012 V. 18. № 6. P. 1655-1662. 
  24. Efremova A.S., Zakharenko A.L., Shram S.I., Kulikova I.V., Drenichev M.S., Sukhanova M.V., Khodyreva S.N., Myasoe-dov N.F., Lavrik O.I., Mikhailov S.N. Disaccharide pyrimidine nucleosides and their derivatives: a novel group of cell-penetrating inhibitors of poly(ADP-ribose) polymerase 1 // Nucleos. Nucleot. Nucl. Acids. 2013. V. 32. № 9. P. 510-528.
  25. Kutuzov M.M., Zakharenko A.L., Sukhanova M.V., Khodyreva S.N., Khomenko T.M., Volcho K.P., Salakhutdinov N.F., Lavrik O.I. Polysulfide compounds as inhibitors of the key base excision repair enzymes // Biopolym. Cell. 2012. V. 28. № 3. P. 239-241.
  26. Smith S., Giriat I., Schmitt A., de Lange T. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres // Science. 1998. V. 282. № 5393. P. 1484-1487.
  27. Liu Y., Snow B.E., Kickhoefer V.A., Erdmann N., Zhou W., Wakeham A., Gomez M., Rome L.H., Harrington L. Vault poly(ADP-ribose) polymerase is associated with mammalian telomerase and is dispensable for telomerase function and vault structure in vivo// Mol. Cell. Biol. 2004. V. 24. № 12. P. 5314-5323.
  28. Steffen J.D., Brody J.R., Armen R.S., Pascal J.M.Structural Implications for Selective Targeting of PARPs // Front. Oncol. 2013. V. 3. P. 301.
  29. Oliver A.W., Amé J.C., Roe S.M., Good V., de Murcia G., Pearl L.H. Crystal structure of the catalytic fragment of murine poly(ADP-ribose) polymerase-2 // Nucleic Acids Res. 2004. V. 32. № 2. P. 456-464.
  30. Schreiber V., Amé J.C., Dollé P., Schultz I., Rinaldi B., Fraulob V., Ménissier-de Murcia J., de Murcia G. Poly­(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1 // J. Biol. Chem. 2002. V. 277. № 25. P. 23028-23036.
  31. Kutuzov M.M., Khodyreva S.N., Amé J.C., Ilina E.S., Sukhanova M.V., Schreiber V., Lavrik O.I. Interaction of PARP-2 with DNA structures mimicking DNA repair intermediates and consequences on activity of base excision repair proteins // Biochimie. 2013. V. 95. № 6. P. 1208-1215.
  32. Dantzer F., de La Rubia G., Ménissier-De Murcia J., Hostomsky Z., de Murcia G., Schreiber V. Base excision repair is impaired in mammalian cells lacking Poly(ADP-ribose) polymerase-1 // Biochemistry. 2000. V. 39. № 25. P. 7559-7569.
  33. Sukhanova M.V., Khodyreva S.N., Lavrik O.I. Poly(ADP-ribose) polymerase 1 regulates activity of DNA polymerase beta in long patch base excision repair // Mutat. Res. 2010. V. 685. № 1-2. P. 80-89.
  34. KrausW. L., Hottiger. M.O. PARP-1 and gene regulation: Progress and puzzles // Mol. Aspects Med. 2013. V. 34. № 6. P. 1109-1123.
  35. Cortes Ledesma F., El Khamisy S.F., Zuma M.C., Osborn K., Caldecott K.W. A human 5\'-tyrosyl DNA phosphodiesterase that repairs topoisomerase-mediated DNA damage // Nature. 2009. V. 461. № 7264. P. 674-678.
  36. Interthal H., Pouliott J.J., Champoux J.J. The Tyrosyl-DNA Phosphodiesterase Tdp1 Is a Member of the Phospholipase D Superfamily // Proc. Natl. Acad. Sci. U.S.A. 2001. V. 98.№ 21. P. 12009−12014.
  37. Rass U., Ahel I., West S.C. Defective DNA repair and neurodegenerative disease // Cell. 2007. V. 130. № 6. P. 991-1004.
  38. Dexheimer T.S., Antony S, Marchand C., Pommier Y. Tyrosyl-DNA Phosphodiesterase as a Target for Anticancer Therapy // Anticancer Agents Med. Chem. 2008. V. 8. № 4. P. 381-389.
  39. Ben Hassine, S. Arcangioli B. Tdp1 protects against oxidative DNA damage in non-dividing fission yeast // EMBO J. 2009. V. 28.№ 6. P. 632-640.
  40. Povirk L.F. Processing of damaged DNA ends for double-strand break repair in mammalian cells // ISRN Mol. Biol. 2012. P. 1-16.
  41. Vance J.R., Wilson T.E. Uncoupling of 30-phosphatase and 50-kinase functions in budding yeast. Characterization of Saccharomyces cerevisiae DNA 30-phosphatase (TPP1) // J. Biol. Chem. 2001. V. 276. № 18. P. 15073-15081.
  42. Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond // Nat. Rev. Cancer. 2006. V. 6. № 10. P. 789-802. 
  43. Pommier Y., Leo E., Zhang H., Marchand C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs // Chem. Biol. 2010. V. 17. № 5. P. 421-433.
  44. Beretta G.L., Cossa G., Gatti L., Zunino F., Perego P.Tyrosyl-DNA Phosphodiesterase 1 Targeting for Modulation of Camptothecin-Based Treatment // Curr. Med. Chem. 2010. V. 17. № 15. P. 1500−1508.
  45. El-Khamisy S.F., Katyal S., Patel P., Ju L., McKinnon P.J., Caldecott K.W. Synergistic decrease of DNA single-strand break repair rates in mouse neural cells lacking both Tdp1 and aprataxin // DNA Repair. 2009. V. 8. № 6. P. 760-766.
  46. Das B.B., Antony S., Gupta S., Dexheimer T.S., Redon C.E., Garfield S., Shiloh Y., Pommier Y. Optimal function of the DNA repair enzyme TDP1 requires its phosphorylation by ATM and/or DNA-PK // EMBO J. 2009. V. 28. № 23. P. 3667-3680.
  47. Katyal S., el-Khamisy S.F., Russell H.R., Li Y., Ju L., Caldecott K.W., McKinnon P.J. TDP1 facilitates chromosomal single-strand break repair in neurons and is neuroprotective in vivo // EMBO J. 2007. V. 26. № 22. P. 4720-4731. 
  48. Hirano R., Interthal H., Huang C., Nakamura T., Deguchi K., Choi K., Bhattacharjee M.B., Arimura K., Umehara F., Izumo S., Northrop J.L., Salih M.A., Inoue K., Armstrong D.L., Champoux J.J., Takashima H., Boerkoel C.F. Spinocerebellar ataxia with axonal neuropathy: consequence of a Tdp1 recessive neomorphic mutation - // EMBO J. 2007. V. 26. № 22. P. 4732-4743.
  49. Barthelmes H.U., Habermeyer M., Christensen M.O., Mielke C., Interthal H., Pouliot J.J., Boege F., Marko D. TDP1 overexpression in human cells counteracts DNA damage mediated by topoisomerases I and II // J. Biol. Chem. 2004. V. 279. № 53. P. 55618-5525.
  50. Nivens M.C., Felder T., Galloway A.H., Pena M.M., Pou­liot J.J., Spencer H.T. Engineered resistance to camptothecin and antifolates by retroviral coexpression of tyrosyl DNA phosphodiesterase-I and thymidylate synthase // Cancer Chemother. Pharmacol. 2004. V. 53. № 2. P. 107-115.
  51. Antony S., Marchand C., Stephen A.G., Thibaut L., Agama K.K., Fisher R.J., Pommier Y.Novel High-Throughput Electrochemiluminescent Assay for Identification of Human Tyrosyl-DNA Phosphodiesterase (Tdp1) Inhibitors and Characterization of Furamidine (NSC 305831) as an Inhibitor of Tdp1 // Nucleic Acids Res. 2007. V. 35. № 13. P. 4474−4484.
  52. Nguyen T.X., Morrell A., Conda-Sheridan M., Marchand C., Agama K., Bermingam A., Stephen A.G., Chergui A., Naumova A., Fisher R., O-Keefe B.R., Pommier Y., Cushman M. Synthesis and Biological Evaluation of the First Dual Tyrosyl-DNA Phosphodiesterase I (Tdp1)−Topoisomerase I (Top1) Inhibitors. // J. Med. Chem. 2012. V. 55. № 16. P. 4457−4478.
  53. Alagoz M., Wells O.S., El-Khamisy S.F. TDP1 deficiency sensitizes human cells to base damage via distinct topoisomerase I and PARP mechanisms with potential applications for cancer therapy // Nucleic Acids Res. 2013. [Epub ahead of print].
  54. Murai J., Huang S.Y., Das B.B., Dexheimer T.S., Takeda S., Pommier Y. Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs DNA damage induced by topoisomerases I and II and base alkylation in vertebrate cells // J. Biol. Chem. 2012. V. 287. № 16. P. 12848-12857.
  55. Lebedeva N.A., Rechkunova N.I., Ishchenko A.A., Saparbaev M., Lavrik O.I. The mechanism of human tyrosyl-DNA phosphodiesterase 1 in the cleavage of AP site and its synthetic analogs. // DNA Repair. 2013. V. 12. № 12. P. 1037-1042.
  56. Lebedeva N.A., Rechkunova N.I., Lavrik O.I. AP-site cleavage activity of tyrosyl-DNA phosphodiesterase 1 // FEBS Lett. 2011. V. 585. № 4. P. 683-686.