350 rub
Journal №1 for 2015 г.
Article in number:
Trace elements: the biological role and significance for medical practice. Communication 1. Copper
Authors:
M.G. Skalnaya - Dr. Sc. (Med.), Professor, Orenburg State University; Center for Biotic Medicine (Moscow) The article opens a series of reviews on the biological role of essential trace elements. This communication is devoted to copper. There considered recent and fundamental data on its participation in physiological processes, metabolism, routes and volumes of entering to the body, relation to various diseases, medical applications. Copper comes into the body mainly with food. In the gastrointestinal tract up to 95% of the ingested copper is absorbed. Divalent copper is absorbed better. Optimum copper intake for humans is 2-3 mg/day. Leading role in copper metabolism belongs to liver. Copper is a vital element that is included in vitamins, hormones, enzymes, respiratory pigments, is involved in various metabolic processes, tissue respiration, promotes iron absorption. It is believed that, several billion people on the planet suffer from copper deficiency in varying degree. Copper deficiency is associated with the development of atherosclerotic dyslipidemia, metabolic syndrome, impaired carbohydrate tolerance, impaired reproductive function. Decrease of body copper is associated with diseases of the immune system, reduction of leukocytes, neutrophils, decline of antioxidant defense. Most commonly copper deficiency results from its insufficient nutritional intake. However, it can also arise from genetic disturbances, such as Wilson's disease, Menkes disease and Aceruloplasminemia. Copper level in human body is estimated by results of blood, urine, hair investigations, as well as by determination of serum ceruloplasmin and activity of copper containing enzymes. Laboratory detection of deviations in copper metabolism is an indication for pharmacological and nutraceutical correction using products which contains copper or influences its metabolism. A.V. Skalny - Dr. Sc. (Med.), Professor, General Director of UNESCO Institute of Trace Elements (Lyon, France); Institute of Bioelementology, Orenburg State University (Orenburg, Russia); Laboratory of Biotechnology and Applied Bioelementology, P.G.Demidov Yaroslavl State University (Yaroslavl, Russia)
Abstract:
The article opens a series of reviews on the biological role of essential trace elements. This communication is devoted to copper. There considered recent and fundamental data on its participation in physiological processes, metabolism, routes and volumes of entering to the body, relation to various diseases, medical applications. Copper comes into the body mainly with food. In the gastrointestinal tract up to 95% of the ingested copper is absorbed. Divalent copper is absorbed better. Optimum copper intake for humans is 2-3 mg/day. Leading role in copper metabolism belongs to liver. Copper is a vital element that is included in vitamins, hormones, enzymes, respiratory pigments, is involved in various metabolic processes, tissue respiration, promotes iron absorption. It is believed that, several billion people on the planet suffer from copper deficiency in varying degree. Copper deficiency is associated with the development of atherosclerotic dyslipidemia, metabolic syndrome, impaired carbohydrate tolerance, impaired reproductive function. Decrease of body copper is associated with diseases of the immune system, reduction of leukocytes, neutrophils, decline of antioxidant defense. Most commonly copper deficiency results from its insufficient nutritional intake. However, it can also arise from genetic disturbances, such as Wilson's disease, Menkes disease and Aceruloplasminemia. Copper level in human body is estimated by results of blood, urine, hair investigations, as well as by determination of serum ceruloplasmin and activity of copper containing enzymes. Laboratory detection of deviations in copper metabolism is an indication for pharmacological and nutraceutical correction using products which contains copper or influences its metabolism.
Pages: 15-28
References

  1. Skalny A.V., Lakarova E.V., Kuzneczov V.V., Skal'naya M.G. Analiticheskie metody' v bioe'lementologii. SPb.: Nauka. 2009. 264 c.
  2. Borisova E.Ja., Volkov A.A., Eremin S.A., Ivanova G.F., Kaletina N.I., Krasilova E.V., Mishhixin V.A., Simonov E.A., Skal'ny'j A.V., Smirnov A.V. Toksikologicheskaya ximiya. Situaczionny'e zadachi i uprazhneniya: ucheb. posobie / pod red. N.I. Kaletinoj. M.: GE'OTAR-Media. 2007. 352 s.
  3. Skalny A.V., Lakarova E.V. Aktual'ny'e voprosy' organizaczii analiticheskix issledovanij v oblasti bioe'lementologii // Vestnik vosstanovitel'noj medicziny'. 2008. № 5a (28). S. 60-62.
  4. Skalny A.V., Vyatchanina E.S. Perspektivy' primeneniya analiza ximicheskix form e'lementov (?Speciation analysis?) v biologii i mediczine // Kliniko-laboratorny'j konsilium. 2008. №3(22). S. 26-32.
  5. Skalny A.V. Ximicheskie e'lementy' v fiziologii i e'kologii cheloveka. M.: Izdatel'skij dom «ONIKS 21 vek»: Mir. 2004. 216 s.
  6. Krebs N., Langkammer C., Goessler W., Ropele S., Fazekas F., Yen K., Scheurer E. Assessment of trace elements in human brain using inductively coupled plasma mass spectrometry // J. Trace Elem. Med. Biol. 2014. V. 28. № 1. R. 1-7.
  7. Michalke B., Halbach S., Nischwitz V. JEM spotlight: metal speciation related to neurotoxicity in humans // J. Environ. Monit. 2009. V. 11. № 5. R. 939-954.
  8. Grabeklis A.R., Skalny A.V., Nechiporenko S.P., Lakarova E.V. Indicator ability of biosubstrances in moderate occupational exposure to toxic metals // Journal of Trace Elements in Medicine and Biology. 2011. V. 25. P. 41-44.
  9. Donma M.M., Donma O., Michalke B., Halbach S., Nischwitz V. Vitamins, Minerals And Metabolic Pathways In Health And Diseases. Istanbul: Istanbul University Publishing House. 2012. 679 p.
  10. Nekrasov V.I., Skalny A.V., Ushakov I.B., Tin'kov A.N., Lebedev N.N., Pulik A.V., Koval' O.V., Lazarev I.A., Spesivczev V.N., Ivanov I.V., Andrienko Ju.I., Sobakin A.K., Skalnaya M.G., Notova S.V., Demidov V.A., Filippova I.V., Pleshakov A.Ju. Vy'yavlenie i korrekcziya narushenij obmena makro- i mikroe'lementov v ambulatorno-poliklinicheskix usloviyax. Metodicheskie rekomendaczii. Utv. Nach.med.upravl. OAO «Gazprom» 26.12.2005 g. Moskva. 2005. 49 s.
  11. Avczy'n A.P., Zhavoronkov A.A., Rish M.A., Strochkova L.S. i dr. Mikroe'lementozy' cheloveka: e'tiologiya, klassifikacziya, organopatologiya. M.: Mediczina, 1991. 496 s.
  12. Suslikov V.L. Geoximicheskaya e'kologiya boleznej. Atomovitozy'. M.: Gelios ARV. 2002. T. 3. 670 s.
  13. Suslikov V.L. Geoximicheskaya e'kologiya boleznej. T.4. Ateroskleroz. Cheboksary': Izd-vo Chuvash. un-ta, 2011. 380 s.
  14. Skalny A.V. Diagnostika i profilaktika mikroe'lementozov s uchetov rezul'tatov mediko-e'kologicheskoj e'kspertizy' / Majmulov V.G., Nagorny'j S.V., Shabrov A.V. Osnovy' sistemnogo analiza v e'kologo-gigienicheskix issledovaniyax. SPb.: SPb GMA im. I.I. Mechnikova. 2000. S. 175-200.
  15. Zajchik V.E., Skal'ny'j A.V. Mediczinskaya e'lementologiya. Predmet issledovaniya, postulaty', opredeleniya, strategiya i taktika razvitiya // Vestnik OGU. Prilozhenie «Bioe'lementologiya». 2004. № 4. S. 36-40.
  16. Skalny A.V. Bioelemenology as an intergrative interdisciplinary approach in life sciences // Conservation of environment for human health /National Environmental Science Academy, New Delhi, NESA. 2013. C. 10. P. 81-93.
  17. Skalny A.V., Rudakov I.A. Bioe'lementologiya - novy'j termin ili novoe nauchnoe napravlenie - // Vestnik Orenburgskogo gosudarstvennogo universiteta. Prilozhenie «Bioe'lementologiya». 2005. № 2. S. 4-8.
  18. Skalny A.V. Razvitie konczepczii bioe'lementov i perspektivy' bioe'lementologii // Mikroe'lementy' v mediczine. 2009. T. 10. № 3-4. S. 1-6.
  19. Skalny A.V. Bioelementology as an interdisciplinary integrative approach in life sciences: Terminology, classification, perspectives // Journal of Trace Elements in Medicine and Biology. 2011. V. 25. P. 3-10.
  20. Skalny A.V. Bioelemenology as an intergrative interdisciplinary approach in life sciences. Conservation of environment for human health // National Environmental Science Academy, New Delhi, NESA. 2013. V. 10. P. 81-93.
  21. Skalny A.V., Grabeklis A.R. Trace element status of population and demography in Russia: possible linkage // Abst. 15th Inter. Symp. on Trace Elements in Man and Animals «TEMA-15» (June 22-26, 2014, Orlando, Florida). Orlando, Florida, 2014. P. 109.
  22. Barashkov G.K. Mediczinskaya bioneorganika. Osnovy', analitika, klinika. M.: Binom. 2011. 512 s.
  23. Skalny A.V., Cy'gan V.N. Patofiziologiya obmena makro- i mikroe'lementov // Patofiziologiya obmena veshhestv: uchebnoe posobie / pod red. V.N. Cy'gana. SPb: SpeczLit. 2013. S. 262-333.
  24. Brewer G.J., Yuzbasiyan-Gurkan V. Wilson Disease // Medicine. 1992. № 3. V. 71. P.139-164.
  25. Anke M., Merian E., Ihnat M., Stoeppler M. Essential and toxic effects of macro, trace and ultratrace elements in the nutrition of man // Elements and Their Compounds in the Environment. 2004. V. 1. P. 343-367.
  26. Oberlis D., Xarland B., Skalny A. Biologicheskaya rol' makro- i mikroe'lementov u cheloveka i zhivotny'x. SPb.: Nauka. 2008. 544 c.
  27. Biesalski H.K., Kohrle J., Schumann K. Vitamine, Spurenelemente und Mineralstoffe. Stuttgart: Thieme, 2002. R. 774.
  28. Skalny A.V. Mikroe'lementy' // Laboratornaya diagnostika infekczionny'x boleznej: spravochnik / pod red. V.I. Pokrovskogo, M.G. Tvorogovoj, G.A. Shipulina. M.: Izdate'stvo BINOM. 2013. S. 447-467.
  29. Skal'naya M.G., Skalny A.V., Demidov V.A. Zavisimost' e'lementnogo sostava volos ot pola i vozrasta // Vestnik SPb GMA im. I.I. Mechnikova. 2001. № 4(2). S. 72-77.
  30. Aftanas L.I., Berezkina E.S., Bonitenko E.Ju., Varenik V.I., Grabeklis A.R., Demidov V.A., Kiselev M.F., Nechiporenko S.P., Nikolaev V.A., Skal'ny'j A.V., Skal'naya M.G. E'lementny'j status naseleniya Rossii. Ch. 2. E'lementny'j status naseleniya Central'nogo federal'nogo okruga / pod red. A.V. Skal'nogo, M.F. Kiseleva. SPb: Medkniga «E'LBI-SPb». 2011. 432 s.
  31. Aftanas L.I., Berezkina E.S., Bonitenko E.Ju., Varenik V.I., Grabeklis A.R., Demidov V.A., Detkov V.Ju., Isankina L.N., Kiselev M.F., Lomakin Ju.V., Nechiporenko S.P., Nikolaev V.A., Skalny A.V., Skalnaya M.G. E'lementny'j status naseleniya Rossii. Ch. 3. E'lementny'j status naseleniya Severo-Zapadnogo, Juzhnogo i Severo-Kavkazskogo federal'ny'x okrugov / pod red. A.V. Skal'nogo, M.F. Kiseleva. SPb: Medkniga «E'LBI-SPb». 2012. 576 s.
  32. Aftanas L.I., Berezkina E.S., Bonitenko E.Ju., Burczeva T.I., Varenik V.I., Grabeklis A.R., Demidov V.A., Kiselev M.F., Nikolaev V.A., Skal'ny'j A.V., Skal'naya M.G. E'lementny'j status naseleniya Rossii. Ch. 4. E'lementny'j status naseleniya Privolzhskogo i Ural'skogo federal'ny'x okrugov / pod red. A.V. Skal'nogo, M.F. Kiseleva. SPb: Medkniga «E'LBI-SPb». 2013. 576 s.
  33. Skal'ny'j A.V., Grabeklis A.R., Demidov V.A., Skal'naya M.G., Berezkina E.S. Svyaz' e'lementnogo statusa naseleniya Central'nogo federal'nogo okruga s zabolevaemost'yu. Ch. 1. E'ssenczial'ny'e i uslovno e'ssenczial'ny'e ximicheskie e'lementy' // Mikroe'lementy' v mediczine. 2012. T. 13. Vy'p. 2. S. 1-7.
  34. Prohaska J.R. Impact of copper deficiency in humans // Ann. N.-Y. Acad. Sci. 2014. V. 1314. P. 1-5.
  35. Prohaska J.R. Role of copper transporters in copper homeostasis // Am. J. Clin. Nutr. 2008. V. 88(3). P. 826S-829S.
  36. Prohaska J.R. Impact of Copper Limitation on Expression and Function of Multicopper Oxidases (Ferroxidases) // Adv. Nutr. 2011. V. 2(2). P. 89-95.
  37. Gupta A. and Lutsenko S. Human copper transporters: mechanism, role in human diseases and therapeutic potential // Future Med. Chem. 2009. V. 1 (6) P. 1125-1142.
  38. Bertinato J., Cheung L., Hoque R. and Plouffe L.J. Ctr1 transports silver into mammalian cells // J. Trace Elem. Med. Biol. 2010. V. 24(3). P. 178-184.
  39. Manni M.L. and Oury T.D. Commentary of «Copper chaperone for Cu, Zn-SOD supplement potentiates the Cu, Zn-SOD function of neuroprotective effects against ischemic neuronal damage in the gerbil hippocampus» // Free Radic. Biol. Med. 2005. V. 39 (3). P. 392-402.
  40. Samonina-Kosicka J., Kańska M. Mechanistic studies of reactions catalysed by diamine oxidase using isotope effects // Isotopes Environ. Health Stud. 2013. V. 49(3). P. 357-364.
  41. Lugović-Mihić L., Seserko A., Duvancić T. et al. Histamine intolerance-possible dermatologic sequences // Acta. Med. Croatica. 2012. V. 66(5). P. 375-381.
  42. Maintz L., Novak N. Histamine and histamine intolerance // Am. J. Clin. Nutr. 2007. V. 85(5). P. 1185-1196.
  43. Mušič E., Korošec P., Šilar M. et al. Serum diamine oxidase activity as a diagnostic test for histamine intolerance // Wien Klin. Wochenschr. 2013. V. 125 (9-10). P. 239-243.
  44. Agúndez J.A., Ayuso P., Cornejo-García J.A. et al. The diamine oxidase gene is associated with hypersensitivity response to non-steroidal anti-inflammatory drugs // PLoS One. 2012. V. 7(11). P. e47571.
  45. Sturza A., Mirică S.N., Duicu O. et al. Monoamine oxidase--a inhibition reverses endothelial dysfunction in hypertensive rat aortic rings // Rev. Med. Chir. Soc. Med. Nat. Iasi. 2013. V. 117(1). P. 165-171.
  46. Sturza A., Leisegang M.S., Babelova A. et al. Monoamine oxidases are mediators of endothelial dysfunction in the mouse aorta. Hypertension. 2013. V. 62(1). P. 140-146.
  47. Wang F., Huang B., Li J. et al. Renalase might be associated with hypertension and insulin resistance in Type 2 diabetes // Ren. Fail. 2014. V. 36(4). P. 552-556.
  48. Kaludercic ., Carpi A., Nagayama T. et al. Monoamine oxidase B prompts mitochondrial and cardiac dysfunction in pressure overloaded hearts // Antioxid. Redox Signal. 2014. V. 20(2). P. 267-280.
  49. Sorato E., Menazza S., Zulian A. et al. Monoamine oxidase inhibition prevents mitochondrial dysfunction and apoptosis in myoblasts from patients with collagen VI myopathies // Free Radic. Biol. Med. 2014. [Epub ahead of print].
  50. Godar S.C., Bortolato M., Castelli M.P. et al. The aggression and behavioral abnormalities associated with monoamine oxidase A deficiency are rescued by acute inhibition of serotonin reuptake // J. Psychiatr Res. 2014. V. 56. P. 1-9.
  51. Verma D., Chakraborti B., Karmakar A. et al. Sexual dimorphic effect in the genetic association of monoamine oxidase A (MAOA) markers with autism spectrum disorder // Prog. Neuropsychopharmacol. Biol. Psychiatry. 2014. V. 50. P. 11-20.
  52. Kim S.K., Park H.J., Seok H. et al. Association study between monoamine oxidase A (MAOA) gene polymorphisms and schizophrenia: lack of association with schizophrenia and possible association with affective disturbances of schizophrenia // Mol. Biol. Rep. 2014. V. 41(5). P. 3457-3464.
  53. Bligt-Lindén E. Pihlavisto M., Szatmári I. et al. Novel pyridazinone inhibitors for vascular adhesion protein-1 (VAP-1): old target-new inhibition mode // J. Med. Chem. 2013. V. 56(24). P. 9837-9848.
  54. Murata M., Noda K., Fukuhara J. et al. Soluble vascular adhesion protein-1 accumulates in proliferative diabetic retinopathy // Invest. Ophthalmol. Vis. Sci. 2012. V. 53(7). P. 4055-4062.
  55. Jepma M., Deinum J., Asplund C.L. et al. Neurocognitive function in dopamine-β-hydroxylase deficiency // Neuropsychopharmacology. 2011. V. 36(8). P. 1608-1619.
  56. Senard J.M., Rouet P. Dopamine beta-hydroxylase deficiency // Orphanet. J. Rare Dis. 2006. V. 1. P. 7.
  57. Komori Y., Imai M., Yamauchi T. et al. Effect of p-aminophenols on tyrosinase activity // Vioorg. Med. Chem. 2014. V. 22(15). P. 3994-4000.
  58. Eskandani M., Golchai J., Pirooznia N. and Hasannia S. Oxidative stress level and tyrosinase activity in vitiligo patients // Indian J. Dermatol. 2010. V. 55(1). P. 15-19.
  59. Baxter L.L., Pavan W.J. The etiology and molecular genetics of human pigmentation disorders // Wiley Interdiscip. Rev. Dev. Biol. 2013. V. 2(3). P. 379-392.
  60. Xiao Q., Ge G. Lysyl oxidase, extracellular matrix remodeling and cancer metastasis // Cancer Microenviron. 2012. V. 5(3). P. 261-273.
  61. Siddikuzzaman P., Grace V.M., Guruvayoorappan C. Lysyl oxidase: a potential target for cancer therapy // Inflammopharmacology. 2011. V. 19(3). P. 117-129.
  62. López B., González A., Hermida N. et al. Role of lysyl oxidase in myocardial fibrosis: from basic science to clinical aspects // Am. J. Physiol. Heart Circ. Physiol. 2010. V. 299(1). P. H1-9.
  63. Debray F.G., Seneca S., Gonce M. et al. Mitochondrial encephalomyopathy with cytochrome c oxidase deficiency caused by a novel mutation in the MTCO1 gene // Mitochondrion. 2014. V. 17C. P. 101-105.
  64. Jin T., Shen H., Zhao Z. and Hu J. Clinical, Pathological, and Neuroimaging Analyses of Two Cases of Leigh Syndrome in a Chinese Family // J. Child. Neurol. 2014. V. [Epub ahead of print]
  65. Schmidlin T., Kennedy B.K. and Daggett V. Structural changes to monomeric CuZn superoxide dismutase caused by the familial amyotrophic lateral sclerosis-associated mutation A4V // Biophys. J. 2009. V. 97(6). P. 1709-1718.
  66. Bousquet-Moore D., Ma X.M., Nillni E.A. et al. Reversal of physiological deficits caused by diminished levels of peptidylglycine alpha-amidating monooxygenase by dietary copper // Endocrinology. 2009. V. 150(4). P. 1739-1747.
  67. Arcucci A. et al. Analysis of extracellular superoxide dismutase in fibroblasts from patients with systemic sclerosis // J. Biol. Regul. Homeost. Agents. 2011. V. 25(4). P. 647-654.
  68. Kuźma-Kozakiewicz M., Berdyński M., Morita M. et al. Recurrent K3E mutation in Cu/Zn superoxide dismutase gene associated with amyotrophic lateral sclerosis // Amyotroph. Lateral Scler. Frontotemporal Degener. 2013. V. 14(7-8). P. 608-614.
  69. Meyer L.A., Durley A.P., Prohaska J.R. and Harris Z.L. Copper transport and metabolism are normal in aceruloplasminemic mice // J. Biol. Chem. 2001. V. 276(39). P. 36857-36861.
  70. Sampath P. et al. Transcript-selective translational silencing by gamma interferon is directed by a novel structural element in the ceruloplasmin mRNA 3' untranslated region // Mol. Cell Biol. 2003. V. 23(5). P. 1509-1519.
  71. Aigner E. et al. A role for low hepatic copper concentrations in nonalcoholic Fatty liver disease // Am. J. Gastroenterol. 2010. V. 105(9). P. 1978-1985.
  72. Texel S.J., Xu X., Harris Z.L. Ceruloplasmin in neurodegenerative diseases // Biochem. Soc. Trans. 2008. V. 36(Pt. 6). P. 1277-1281.
  73. Rossi-George A. et al. Copper modulates the phenotypic response of activated BV2 microglia through the release of nitric oxide // Nitric Oxide. 2012. V. 27(4). P. 201-209.
  74. Squitti R. Copper dysfunction in Alzheimer's disease: From meta-analysis of biochemical studies to new insight into genetics // J. Trace Elem. Med. Biol. 2012. V. 26(2-3).P. 93-96.
  75. Spisni E. et al. Effect of copper on extracellular levels of key pro-inflammatory molecules in hypothalamic GN11 and primary neurons // Neurotoxicology. 2009. V. 30(4).P. 605-612.
  76. Jomova K. et al. Metals, oxidative stress and neurodegenerative disorders // Mol. Cell. Biochem. 2010. V. 345(1-2). P. 91-104.
  77. Exley C. et al. Brain Burdens of Aluminum, Iron, and Copper and their Relationships with Amyloid-β Pathology in 60 Human Brains // J. Alzheimers Dis. 2012. V. 31(4).P. 725-730.
  78. Singh I. et al. Low levels of copper disrupt brain amyloid-β homeostasis by altering its production and clearance // Proc. Natl. Acad. Sci. USA. 2013. V. 110 (36). P. 14771-14776.
  79. Squitti R. et al. Ceruloplasmin fragmentation is implicated in 'free' copper deregulation of Alzheimer's disease // Prion. 2008. V. 2(1). P. 23-27.
  80. Bharucha K.J. et al. Lower serum ceruloplasmin levels correlate with younger age of onset in Parkinson's disease // J. Neurol. 2008. V. 255(12). P. 1957-1962.
  81. Aigner E. et al. A role for low hepatic copper concentrations in nonalcoholic Fatty liver disease // Am. J. Gastroenterol. 2010. V. 105(9). P. 1978-1985.
  82. Chen H., Attieh Z.K., Su T. et al. Hephaestin is a ferroxidase that maintains partial activity in sex-linked anemia mice // Blood. 2004. V. 103(10). P. 3933-3939.
  83. Prohaska J.R., Broderius M. Copper deficiency has minimal impact on ferroportin expression or function // Biometals. 2012. V. 25(4). P. 633-642.
  84. Vashchenko G., MacGillivray R.T. Multi-copper oxidases and human iron metabolism // Nutrients. 2013. V. 5(7). P. 2289-2313.
  85. Chen H., Attieh Z.K., Syed B.A. et al. Identification of zyklopen, a new member of the vertebrate multicopper ferroxidase family, and characterization in rodents and human cells // J. Nutr. 2010. V. 140(10). P. 1728-1735.
  86. Suzuki K.T. et al. Roles of metallothionein in copper homeostasis: responses to Cu-deficient diets in mice // J. Inorg. Biochem. 2002. V. 88 (2). P. 173-182.
  87. Miyayama T. et al. Roles of copper chaperone for superoxide dismutase 1 and metallothionein in copper homeostasis // Metallomics. 2011. V. 3 (7). P. 693-701.
  88. Greenough M. et al. Signals regulating trafficking of Menkes (MNK; ATP7A) copper-translocating P-type ATPase in polarized MDCK cells // Am. J. Physiol. Cell Physiol. 2004. V. 287(5). P. C1463-C1471.
  89. Johnson P.E., Milne D.B. and Lykken G.I. Effects of age and sex on copper absorption, biological half-life and status in humans // Am. J. Nutr. 1992. V. 56. P. 917-925.
  90. Hayashi M. Oxidative stress in developmental brain disorders // Neuropathology. 2009. V. 29(1). P. 1-8.
  91. Jomova K. and Valko M. Advances in metal-induced oxidative stress and human disease // Toxicology. 2011. V. 10. № 283(2-3). P. 65-87.
  92. Bugel S. et al. Effect of copper supplementation on induces of copper status and certain CVD risk in young healthy women // Br.J. Nutr. 2005. V. 94 (2). P. 231-236.
  93. Tisato F. et al. Copper in diseases and treatments, and copper-based anticancer strategies // Med. Res. Rev. 2010. V. 30(4). P. 708-749.
  94. Wang T., Li R., Lin C. et al. Brief Communication: Copper suppression of vascular endothelial growth factor receptor-2 is involved in the regression of cardiomyocyte hypertrophy // Exp. Biol. Med. (Maywood). 2014. V. 239(8). P. 948-953.
  95. Rafi A., Devaki R., Sabitha K. et al. Importance of Serum Copper and Vascular Endothelial Growth Factor (VEGF-A) Levels in Postmenopausal Bleeding // Indian J. Clin. Biochem. 2013. V. 28(2). P. 147-151.
  96. Lutsenko S., Bhattacharjee A. and Hubbard A.L. Copper handling machinery of the brain // Metallomics. 2010. V. 2(9). P. 596-608.
  97. Wang Y., Hodgkinson V., Zhu S. et al. Advances in the Understanding of Mammalian Copper Transporters // Adv. Nutr. 2011. V. 2(2). P. 129-137.
  98. Prohaska J.R. and Gybina A.A. Intracellular copper transport in mammals // J. Nutr. 2004. V. 134 (5). P. 1003-1006.
  99. Bie P. et al. Molecular pathogenesis of Wilson and Menkes disease: correlation of mutations with molecular defects and disease phenotypes // J. Med. Genet. 2007. V. 44(11). P. 673-688.
  100. Barry A.N. et al. The lumenal loop Met672-Pro707 of copper-transporting ATPase ATP7A binds metals and facilitates copper release from the intramembrane sites // J. Biol. Chem. 2011. V. 286(30). P. 26585-26594.
  101. Hamza I. et al. Interaction of the copper chaperone HAH1 with the Wilson disease protein is essential for copper homeostasis // Proc. Natl. Acad. Sci USA. 1999. V. 96(23). P. 13363-13368.
  102. Schmitt F. et al. Evolution of Exchangeable Copper and Relative Exchangeable Copper through the Course of Wilson's Disease in the Long Evans Cinnamon Rat // PLoS. One. 2013. V. 8(12). P. e82323.
  103. Squitti R. et al. 'Free' copper in serum of Alzheimer's disease patients correlates with markers of liver function // J. Neural. Transm. 2007. V. 114(12). P. 1589-1594.
  104. Seidel J. Disturbed copper transport in humans. P. 1: mutations of the ATP7A gene lead to Menkes disease and occipital horn syndrome // Cell Mol. Biol. 2001. V. 47. P. OL141-148.
  105. Prohaska J.R. Genetic diseases of copper metabolism // Clin. Physiol. Biochem. 1986. V. 4(1). P. 87-93.
  106. Atili A. et al. Hermansky-Pudlak syndrome // Ophthalmologe. 2012. V. 110(2). P. 160-163.
  107. Mitsui T. et al. Oxidative damage to skeletal muscle DNA from patients with mitochondrial encephalomyopathies // J. Neurol Sci. 1996. V. 139(1). P. 111-116.
  108. Lax N.Z. et al. Loss of myelin-associated glycoprotein in kearns-sayre syndrome // Arch. Neurol. 2012. V. 69(4). P. 490-499.
  109. Bin B.H. et al. Biochemical characterization of human ZIP13 protein: a homo-dimerized zinc transporter involved in the spondylocheiro dysplastic Ehlers-Danlos syndrome // J. Biol. Chem. 2011. V. 286(46). P. 40255-40265.
  110. Sriramachari S. and NayakIndian N.C. Childhood cirrhosis: Several dilemmas resolved // Indian J. Med. 2006. V. 128. P. 93-96.
  111. Skalny A.V., Kurchashova S.Ju., Vyatchanina E.S. Izuchenie roli disbalansa czinka i drugix mikroe'lementov v patogeneze alkogolizma i alkogol'noj e'mbriofetopatii v Rosii // Narkologiya. 2008. № 5. S. 26.
  112. Semenov A.S., Skalny A.V. Immunopatologicheskie i patobioximicheskie aspekty' patogeneza perinatal'nogo porazheniya mozga. SPb.: Nauka. 2009. 368 c.
  113. Skalnaya M.G., Tkachev V.P. Trace elements content and hormonal profiles in women with androgenetic alopecia // J. Trace Elem. Med. Biol. 2011. 5S1. P. 50-53.