350 rub
Journal №7 for 2013 г.
Article in number:
Nitric oxide (II) in the oxidation-reduction of heme iron oxyhemoglobin
Authors:
M.K. Ruban, G.A. Vashanov, I.A.Lavrinenko
Abstract:
One of the physiologically important functions of nitric oxide (II) is the regulation of vascular tone. Researchers suggest different molecular mechanisms of hypoxic vasodilation of blood vessels involving NO and hemoglobin. However, in virtue of inconsistency and complexity of interpreting incoming experimental data requires constant updating or revision of existing hypotheses. This is due to the high reactivity of the molecule nitric oxide (II), and as a consequence, its extensive capabilities in the formation of various NO-derivatives. We studied the spectral properties of human hemoglobin solutions incubated in the medium with various concentrations of NO. Based on analysis of the electronic absorption spectra show that the interaction of human oxyhemoglobin (HbO2) with nitric oxide (II) leads to oxidation of heme iron and protein in the transition metform (MtHb). Oxidation hemeprotein due to leak, probably at least two reactions. One response is the interaction of Fe2+?О2 heme with NO to form a breakaway ONOO−/NO3− and one electron from an atom of iron. Another - the oxidation of molecules NO dissolved or dissociated oxygen from hemoglobin, which lead to the formation of schim nitrite ions, which, in turn, is oxidized heme iron. A further increase in the concentration of nitric oxide (II) in solution leads to the formation of MtHb restored to fully nitroziled hemeprotein. Based on the results of research and literature assumption that the penetration of NO molecules in red blood cells will lead to the recovery of bioactive forms by intracellular oxyhemoglobin. However, the observed effect of vasodilator NO-containing red blood cells, indicating an opportunity not only to deposit, but also to transport nitric oxide (II) outside the cell. Synthesized eNOS NO under physiological conditions does not penetrate red blood cells in significant quantities. From this it follows that the reactions take place inside the cells, leading to the synthesis of NO from NO-derivatives that fall from blood plasma. The paper discusses other possible reactions, as well as physiological and pathological effects accompanying or resulting from the interaction of oxyhemoglobin and NO.
Pages: 59-63
References

  1. Vanin A.F. Oksid azota - regulyator kletochnogo metabolizma // Sorosovskij obrazovatel'ny'j zhurnal. 2001. T. 7. № 11. S. 7-12.
  2. Zelenin K.N. Oksid azota (II): novy'e vozmozhnosti davno izvestnoj molekuly' // Sorosovskij obrazovatel'ny'j zhurnal. 1997. № 10. S. 105-110.
  3. Nedospasov A.A., Beda N.V. Biogenny'e oksidy' azota // Priroda. 2005. № 7. S. 35-42.
  4. Sosunov A.A. Oksid azota kak mezhkletochny'j posrednik // Sorosovskij obrazovatel'ny'j zhurnal. 2000. T. 6. № 12. S. 27-34.
  5. Osipov A.N., Borisenko G.G., Vladimirov Ju.A. Biologicheskaya rol' nitrozil'ny'x kompleksov gemoproteinov // Uspexi biologicheskoj ximii. 2007. T. 47. S. 259-292.
  6. Culotta E., Koshland Jr. D.E. NO news is good news // Science. 1997. V. 258. Issue 5090. P. 1862-1865.
  7. Zvyagina T.V. Metody' izucheniya metabolizma oksida azota // Vestnik gigieny' i e'pidemiologii. 2001. T. 5. № 2. S. 128-137.
  8. Gow A.J. The biological chemistry of nitric oxide as it pertains to the extrapulmonary effects of inhaled nitric oxide // Proc. Am. Thorac. Soc. 2006. V. 3. P. 150-152.
  9. Allen B.W., Stamler J.S., Piantadosi C.A. Hemoglobin, nitric oxide and molecular mechanisms of hypoxic vasodilation // Trends Mol. Med. 2009. V. 15. № 10. P. 452-460.
  10. Gladwin M.T., Schechter A.N. NO contest: nitrite versus S-nitroso-hemoglobin // Circulation Research. 2004. V. 94. P. 851-855.
  11. Herold S., Rock G. Reactions of deoxy-, oxy-, and methemoglobin with nitrogen monoxide. Mechanistic studies of the S-nitrosothiol formation under different mixing conditions // J. Biol. Chem. 2003. V. 278. P. 6623-6634.
  12. Wallis J.P. Nitric oxide and blood: a review // Transfusion medicine. 2005. V. 15. P. 1-11.
  13. Glinka N.L. Obshhaya ximiya: ucheb. posobie dlya nexim. specz. vuzov / pod red. V.A. Rabinovicha. L.: Ximiya. 1979. 720 c.
  14. Drabkin D.L. The chromatographic and optical properties of hemoglobin of man in comparison those of other species // J. Biol. Chem. 1946. V. 164. P. 703-723.
  15. Blyumenfel'd L.A. Gemoglobin i obratimoe prisoedinenie kisloroda M.: Sov. nauka. 1957. 134 s.
  16. Stus' L.K., Rozanova E.D. Osczillyacziya nekotory'x ligandirovanny'x form gemoglobina pri xranenii krovi // Biofizika. 1992. T. 37. Vy'p. 2. S. 387-388.
  17. Zwart A., Buursma A., van Kampen E.J., Oeseburg B., van der Ploeg P.H., Zijlstra W.G. A multi-wavelength spectrophotometric method for the simultaneous determination of five haemoglobin derivatives // J. Clin. Chem. Clin. Biochem. 1981. V. 19. № 7. P. 457-463.
  18. Kelm M., Preik M., Hafner D.J., Strauer B.E. Evidence for a multifactorial process involved in the impaired flow response to nitric oxide in hypertensive patients with endothelial dysfunction // Hypertension. 1996. V. 3. № 1. P. 346-353.
  19. Pietraforte D., Mallozzi C., Scorza G., Minetti M. Role of thiols in the targeting of S-nitroso thiols to red blood cells // Biochemistry. 1995. V. 34. P. 7177-7185.
  20. Gow A.J., Luchsinger B.P., Pawloski J.R., Singel D.J., Stamler J.S. The oxyhemoglobin reaction of nitric oxide // Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 9027-9032.
  21. Cassoly R., Gibson Q.H. Conformation, co-operativity and ligand binding in human hemoglobin // J. Mol. Biol. 1975. V. 91. P. 301-313.
  22. Herold S., Exner M., Nauser T. Kinetic and mechanistic studies of the NO center dot-mediated oxidation of oxymyoglobin and oxyhemoglobin // Biochemistry-US. 2001. V. 40. P. 3385-3395.
  23. Kim-Shapiro D.B. Hemoglobin-nitric oxide cooperativity: is NO the third respiratory ligand - // Free Radic. Biol. Med. 2004. V. 36. P. 402-412.
  24. Huang Z., Hearne L., Irby C.E., King S.B., Ballas S.K., Kim-Shapiro D.B. Kinetics of increased deformability of deoxygenated sickle cells upon oxygenation // Biophys. J. 2003. V. 85. P. 2374-2383.
  25. Kosaka H., Tyuma I. Mechanism of autocatalytic oxidation of oxyhemoglobin by nitrite // Environmental Health Perspectives. 1987. V. 73. P. 147-151.
  26. McMahon T.J., Moon R.E., Luschinger B.P., Carraway M.S., Stone A.E., Stolp B.W., Gow A.J., Pawloski J.R., Watke P., Singel D.J., Piantadosi C.A., Stamler J.S. Nitric oxide in the human respiratory cycle // Nat. Med. 2002. V. 8. P. 711-717.
  27. Pawloski J.R., Hess D.T., Stamler J.S. Export by red blood cells of nitric oxide bioactivity // Nature. 2001. V. 409. P. 622-626.
  28. Datta B., Tufnell-Barrett T., Bleasdale R.A., Jones C.J., Beeton I., Paul V., Frenneaux M., James P. Red blood cell nitric oxide as an endocrine vasoregulator: a potential role in congestive heart failure // Circulation. 2004. V. 109. P. 1339-1342.
  29. Huang K.T., Han T.H., Hyduke D.R., Vaughn M.W., Van Herle H., Hein T.W., Zhang C., Kuo L., Liao J.C. Modulation of nitric oxide bioavailability by erythrocytes // Proc. Natl. Acad. Sci. USA. 2001. V. 98. P. 11771-11776.
  30. Sonveaux P., Lobysheva I.I., Feron O., McMahon T.J. Transport and peripheral bioactivities of nitrogen oxides carried by red blood cell hemoglobin: role in oxygen delivery // Physiology. 2007. V. 22. P. 97-112.
  31. Vashanov G.A. Rol' sub''edinichny'x kontaktov v proyavlenii strukturno-funkczional'ny'x svojstv gemoglobina v usloviyax razlichnogo mikrookruzheniya: Avtoref. dis. ? d-ra biol. nauk. 03.00.02. Voronezh. 2004. 46 s.