350 rub
Journal №7 for 2013 г.
Article in number:
Research of the structural organization for inulinase from Aspergillus awamori BKMF 2250
Authors:
M.G. Holyavka, V.G. Artyukhov, T.A. Kovaleva
Abstract:
It is shown that at incubation of inulinase with SDS in concentration of 3,510-3 and 3,510-4 mol/l probably there is inulinases denaturation. At SDS action in concentration of 3,510-6 mol/l the microenvironment of proteins chromophores is changed and the «hidden» radicals of aromatic amino acids can appear on a molecular surface; the quarternary structure of enzyme remains at this concentration of SDS. At SDS influence in concentration of 3,510-5 mol/l there are deeper reorganizations in a inulinase molecule: its dissociation on two asymmetric subunits. The molecular masses of subunits, calculated by results of our experiments, made 76,9 and 10,1 kDa. Further researches of inulinase and its separate subunits were carried out by means of the UR-spectroscopy method. Results showed that the quarternary structure of enzyme is stabilized, apparently, by mainly hydrophobic forces. For the purpose to identificate the role of dissociation process at enzymes molecule on subunits in manifestation of functional inulinases activity we defined catalytic activity of its subunits: it is shown that activity of enzyme in a dimeric form is lower, than total activity of its subunits, and, therefore, processes of association and dissociation of enzymes subunits take part in regulation of inulinases catalytic activity.
Pages: 37-41
References

  1. Alberto F., Bignon C., Sulzenbacher G., Henrissat B., Czjzek M. The three-dimensional crystal structure of invertase (β-fructosidase) from Thermotoga maritima reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases // J. Biol. Chem. 2004. V. 279. P. 18903-18910.
  2. Alberto F., Jordi E., Henrissat B., Czjzek M. Crystal structure of inactivated Thermotoga maritima invertase in complex with the trisaccharide substrate raffinose // Biocherm. J. 2006. V. 395. P. 457-462.
  3. Arand M., Golubev A.M., Neto J.R.B., Polikarpov I., Wattiez R., Korneeva O.S., Eneyskaya E.V., Kulminskaya A.A., Shabalin K.A., Shishliannikov S.M., Chepurnaya O.V., Neustroev K.N. Purification, characterization, gene cloning and preliminary X-ray data of the exo-inulinase from Aspergillus awamori // Biocherm. J. 2002. V. 362. P. 131-135.
  4. Nagem R.A.P., Rojas A.L., Golubev A.M., Korneeva O.S., Eneyskaya E.V., Kulminskaya A.A., Neustroev K.N., Polikarpov I. Crystal structure of exoinulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition // J. Mol. Biol. 2004. V. 344. P. 471-480.
  5. Verhaest M., Ende W.V., Roy K.L., Ranter C.J.D., Laere A.V., Rabijns A. X-ray diffraction structure of a plant glycosyl hydrolase family 32 protein: fructan 1-exohydrolase IIa of Cichorium intybus // The Plant Journal. 2005. V. 41. P. 400-411.
  6. Skripkin A.Ju., Voly'nskaya A.V., Shishkov A.V. Issledovanie mexanizma svyazy'vaniya dodeczilsul'fata natriya lizoczimom // Molekulyarnaya biologiya. 1981. T. 15. S. 1364-1370.
  7. Kubo K. Takagi T. Modulation of the behavior of a protein in polyacrilamide electrophoresis in the presence of dodecyl sulfafebly varying the cations // Anal. Biothem. 1995. V. 224. № 2. P. 572-579.
  8. Artyuxov V.G., Nakvasina M.A. Biologicheskie membrany': strukturnaya organizacziya, modifikacziya fiziko-ximicheskimi agentami: uchebnoe posobie. Voronezh: izdatel'stvo VGU. 2000. 296 s.
  9. Kovaleva T.A., Holyavka M.G. Issledovanie strukturny'x osobennostej inulinaz iz razlichny'x produczentov metodom IK-spektrofotometrii // Voprosy' biologicheskoj, mediczinskoj i farmaczevticheskoj ximii. 2011. № 1. S. 3-7.
  10. Ermakov A.I., Arasimovich V.V., Jarosh N.P. Metody' bioximicheskogo issledovaniya rastenij // L.: Agropromizdat. 1987. 429 s.