350 rub
Journal №7 for 2013 г.
Article in number:
Dependence of nucleoprotein complex formation with protein Dps on physico-chemical properties of DNA
Authors:
S.S. Antipov, V.O. Pokusaeva, V.V. Melekhov, O.N. Ozoline
Abstract:
Dps protein (DNA-binding Protein of Starved cells) of E.coli is one of the nucleoid-associated proteins whose expression significantly increases in the stationary phase of growth. Dps dodecamer is a multifunctional protein. It protects bacterial DNA from various types of damage by oxidizing Fe2 + to Fe3 + and depositing of 400-500 iron oxide molecules inside the protein cavity. There are no conventional DNA-binding modules in the 3D-structure of Dps, so the way of its interaction with DNA is yet unknown. Multifunctional properties of Dps protein, precisely the ability to bind DNA tightly and form within the protein cavity mineralized core with intrinsic magnetic moment, dependence on microwave irradiation, imply the controllable immobilization of Dps on DNA - forming matrix. It could enable the creation of predetermined distribution of fixed composition and size ferromagnetic particles. Therefore, a thorough analysis of DNA-Dps interaction is extremely relevant. The efficiency of nucleoprotein complex formation with the protein Dps was investigated as a function of the electrostatic potential, the magnitude of the anisotropic bending and thermodynamic stability of the model DNA fragments taken from the genome of E.coli. For comparison, we used four fragments, two of which were derived from the promoter regions of genes dps and hns, one of the hns coding sequence and one represented transcriptionally inactive «promoter island» located within the gene yeaI. All fragments formed complexes with Dps, which is consistent with the general point of view that Dps is capable to bind any nucleotide sequences. But efficiency of interaction appeared to be different, which is the first indication, assuming certain binding specificity. DNA fragment containing the A/T-rich sequence of the gene yeaI interacted with Dps most effectively. That means that the thermodynamically unstable and therefore easily deformable nucleotide sequences may be the preferred targets for Dps, which is the major protein of bacterial nucleoid, condensing bacterial genome and protecting it from different damages during stationary growth and under different stresses.
Pages: 24-28
References

  1. Ali Azam T., Iwata A., Nishimura A., Ueda S., Ishihama A. Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid // Journal of Bacteriology. 1999. V. 181. P. 6361-6370.
  2. Grainger D.C., Goldberg M.D., Lee D.J., Busby S.J. Selective repression by Fis and H-NS at the Escherichia coli dps promoter // Mol. Microbiol. 2008. V. 68. P. 1366-1377.
  3. Ceci P., Cellai S., Falvo E., Rivetti C., Rossi G.L., Chiancone E. DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus // Nucleic Acids Res. 2004. V. 32. P. 5935-5944.
  4. Grant R.A., Filman D.J., Finkel S.E., Kolter R., Hogle J.M. The crystal structure of Dps, a ferritin homolog that binds and protects DNA // Nat. Struct. Biol. 1998. V. 5. P. 294-303.
  5. Antipov S.S., Kurganov K.V., Chemeris K.S., Ozolin' O.N. Bakterioferritin kak biosensor i nanostruktura // Vestnik biotexnologii i fiziko-ximicheskoj biologii im. Ju. A.Ovchinnikova. 2007. T. 3. S. 40-44.
  6. Shvy'reva U.S., Tutukina M.N., Ozolin' O.N. Bakterioferritin: svojstva i strukturnaya organizacziya regulyatornoj oblasti gena dps // Biofizika. 2011. T. 56. № 2. S. 821-830.
  7. Pokusaeva V.O., Antipov S.S., Shvy'reva U.S., Tutukina M.N., Ozolin' O.N. Superprodukcziya, vy'delenie i ochistka funkczional'no aktivnogo bakterioferritina Dps E.coli. // Sorbczionny'e i xromatograficheskie proczessy'. 2012. T. 12. № 6. S. 1011 - 1017.
  8. Altuvia S., Almiron M., Huisman G., Kolter R., Storz G. The dps promoter is activated by OxyR during growth and by IHF and σs in stationary phase // Mol. Microbiol. 1994. V. 13. P. 265-272.
  9. Shavkunov K. S., Masulis I. S., Tutukina M. N., Deev A. A., Ozoline O. N. Gains and unexpected lessons from genome-scale promoter mapping // Nucleic Acids Res. 2009. V. 37. P. 4919-4931.
  10. Dersch P, Schmidt K, Bremer E. Synthesis of the Escherichia coli K-12 nucleoid-associated DNA-binding protein H-NS is subjected to growth-phase control and autoregulation // Molecular Microbiology. 1993 V. 8. № 5. P. 875-89.
  11. Tutukina M. N., Shavkunov K. S., Masulis I. S., Ozolin' O. N. Antismy'slovaya transkripcziya v lokuse hns Escherichia coli // Molekulyarnaya biologiya. 2010. T. 44. S. 497-506.
  12. Shevchenko A., Wilm M., Vorm O., Mann M. Mass spectrometric sequencing of proteins from silver-stained polyacrylamide gels // Analytical Chemistry. 1996. V. 68. P. 850-858.
  13. Osypov A.A., Krutinin G.G., Kamzolova S.G. DEPPDB - DNA electrostatic potential properties database: electrostatic properties of genome DNA // Journal of Bioinformatics and Computation Biology. 2010. V. 8. № 3. P. 413-425.
  14. Vlahovicek  K., Kaján L., Pongor S. DNA analysis servers: plot.it, bend.it, model.it and IS // Nucleic Acids Research. 2003 V. 31. № 13. P. 3686-3687.
  15. Bernstein J. A., Khodursky A. B., Lin P.-H., Lin-Chao S., Cohen S. N. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays // Proc. Natl. Acad. Sci. USA. 2002. V. 99. P. 9697-9702.
  16. Almiron M., Link A.J., Furlong D., Kolter R. A novel DNA-binding protein with regulatory andprotective roles in starved Escherichia coli // Genes Dev. 1992. V. 6. P. 2646-2654.