350 rub
Journal №12 for 2013 г.
Article in number:
Study of the protein aggregates formation in the presence of potassium and europium ions by photon-correlation spectroscopy and atomic-force microscopy
Authors:
T.N. Tikhonova - Post-graduate Student, Department of Molecular Physics, Faculty of Physics, M.V. Lomonosov Moscow State University; Junior Research Scientist, Establishment of the Russian Academy of Sciences the Institute of Microelectronics, Moscow. E-mail: t.n.tikhonova@yandex.ru
G.P. Petrova - Dr.Sc. (Phys.-Math.), Professor, Department of Molecular Physics, Faculty of Physics, M.V. Lomonosov Moscow State University. E-mail: petrova@phys.msu.ru
V.V. Kashin - Research Scientist, V.A. Kotel-nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow. E-mail: vadim_kashin@mail.ru
S.V. Krupenin - Research Scientist, V.A. Kotel-nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow. E-mail: krupenin@cplire.ru
E.M. Eganova - Junior Research Scientist, Establishment of the Russian Academy of Sciences the Institute of Microelectronics, Moscow. E-mail: eganovaem@mail.ru
Abstract:
The aqueous solutions of main blood serum proteins (albumin, g-globulin) containing small concentrations of ions of potassium and europium were investigated with the help of photon-correlation spectroscopy and atomic-force microscopy. The dependence of translation diffusion coefficient values and also effective radiuses of dispersive particles were obtained on pH and salt concentration. It is revealed that in these solutions protein dipole aggregates are formed that is also confirmed by AFM.
Pages: 24-30
References
  1. Stefani M., Dobson C.M. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution // J. Mol. Med. 2003. V. 81. P. 678-699.
  2. Morozova-Roche L., Malisauskas M. A false paradise - mixed blessings in the protein universe: the amyloid as a new challenge in drug development // Curr. Med. Chem. 2007. V. 14. P. 1221-1230.
  3. Gras S.L., Tickler A.K., Squires A.M., Devlin G.L., Horton M.A., Dobson C.M., MacPhee C.E. Functionalised amyloid fibrils for roles in cell adhesion // Biomaterials. 2008. V. 29. P. 1553-1562.
  4. Vetri V., Librizzi F., Leone M., Militello V. Effects of succinylation on thermal induced amyloid formation in Concanavalin A // Eur Biophys J. 2006. V. 36. P. 717-725.
  5. Gun-ko V.M., Klyueva A.V., Levchuk Yu.N., Leboda R. Photon correlation spectroscopy investigations of protein // Adv. Colloid and Interface Science. 2003. V. 105. P. 201-328.
  6. Petrova G.P., Petrusevich Yu.M., Evseevicheva A.N. Molecular clusters in water protein solutions in the presence of heavy metal ions // Gen. Phys. and Biophys. 1998. V. 17(2). P. 97.
  7. Petrova G.P., Petrusevich Ju.M. Sil'ny'e e'lektrostaticheskie vzaimodejstviya zaryazhenny'x biopolimerov v vodny'x rastvorax // Biomediczinskaya radioe'lektronika. 2000. № 3. S. 41.
  8. Petrova G.P., Petrusevich Ju.M., Ten D.I. Obrazovanie dipol'ny'x kompleksov v rastvorax s maloj konczentracziej ionov tyazhely'x metallov: diagnostika metodov lazernogo svetorasseyaniya // Kvant. E'lektronika. 2002. T. 32. № 10. S. 897.
  9. Hong L., Xingcan S., Zhiliang J., Xiwen H., Panwen S. Binding equilibrium of I- to serum albumin with resonance Rayleigh scattering // Science in China. 2000 V. 43. № 6. P. 600-608.
  10. http:// www. photocor.ru/dls-instrument.htm
  11. http://www.ntmdt.ru/device/solver-p47-pro
  12. Schartl W. «Light scattering from polymer solutions and nanoparticle dispersions» Springer,2007
  13. Vol'kenshtejn M.V. Biofizika. M.: Nauka. 1988.
  14. Tamai H., Fujii A., Suzawa T. Some colloidal considerations on the surface characteristics of various emulsifier-free polymer latices // Journal of Colloid and Interface science. 1987. V. 118. P. 176-181.
  15. Scheuring S., Fotiadis D., Moller C., Muller S. A., Engel A., Muller D. Single proteins observed by atomic force microscopy // Single Molecules. 2001. V. 2. P. 59-67.
  16. Ortega-Vinuesa J.L., Tengvall P., Lundstrom I. Aggregation of HSA, IgG and fibrinogen on methylated silicon surfaces // Journal of Colloid and Interface science. 1998. V. 207. P. 228-239.
  17. Ta T., Sykes M., McDermott M. Real-time observation of plasma protein film formation on well-defined surfaces with scanning force microscopy // Langmuir. 1998. V. 7. P. 2710-2718.
  18. Quist A., Bjorck L., Reimann C., Oscarsson S., Sundqvist B. A scanning force microscopy pancreas trypsin adsorption on mica surfaces // Surface Science. 1995. V. 325. P. L406-L412.
  19. Xu L., Soman P., Agnihotri A., Siedlecki C. AFM methods for characterizing protein interactions with microphase-separated polyurethane biomaterials. Biological Interactions on Materials Surfaces. 2009. P. 43-67.
  20. Yang J. AFM as a high-resolution imaging tool and a molecular bond force probe // Cell Biochemistry and Biophysics. 2004. V. 41. № 3. P. 435-449.
  21. http://www.photocor.ru/software.htm
  22. Lovell M., Robertson J., Teesdale W., Campbell J., Markesbery W. Copper, iron and zinc in alzheimer-s disease senile plaques // Journal of Neurological Science. 1998. V. 158. P. 47-52.
  23. Mantyh P., Ghilardi J., Rogers S., DeMaster E., Allen C., Stimson E., Maggio J. Albumin, iron and zinc ions promote aggregation of physiological concentration of β-amyloid peptide // Journal of Neurochemistry. 1993. V. 61. P. 1171-1174.
  24. Lin V., Koenig J. Raman studies of bovine serum albumin // Biopolymers. 1976. V. 15. P. 203-218.
  25. Hayakawa I., Kajihara J., Morikawa K., Oda M., Fujio Y. Denaturation of bovine serum albumin (BSA) and ovalbumin by high pressure, heat and chemicals // Journal of Food Science. 1992. V. 57. P. 288-292.