350 rub
Journal №11 for 2013 г.
Article in number:
The cytostatic action of iron oxide nanoparticles
Authors:
T.A. Fedotcheva - Dr. Sc. (Med.), Senior Research Scientist, Department of Molecular Pharmacology and Radiobiology named by Academician P.V. Sergeev, Russian National Research Medical University named by N.I. Pirogov, Moscow. Е-mail: tfedotcheva@mail.ru
N.I. Fedotcheva - Ph.D. (Biol.), Leading Research Scientist, Institute of Theoretical and Experimental Biophysics, Moscow region, Pushchino
V.V. Teplova - Ph.D. (Biol.), Leading Research Scientist, Institute of Theoretical and Experimental Biophysics, Moscow region, Pushchino
A.G. Akopdjanov - Senior Research Scientist, Senior Research Scientist, Department of Molecular Pharmacology and Radiobiology named by Academician P.V. Sergeev, Russian National Research Medical University named by N.I. Pirogov, Moscow
N.L. Shimanovskii - Dr. Sc. (Med.), Head of Department of Molecular Pharmacology and Radiobiology named by Academician P.V. Sergeev, Russian National Research Medical University named by N.I. Pirogov, Moscow
M.A. Dryagina - Post-graduate Student, Department of Molecular Pharmacology and Radiobiology named by Academician P.V. Sergeev, Russian National Research Medical University named by N.I. Pirogov, Moscow
E.V. Odintsova - Leading Research Scientist, All-Russian Scientific Research Institute of Medicinal and Aromatic Plants (VILAR)
V.V. Banin - Dr. Sc. (Med.), Head of Department of Biotechnology, All-Russian Scientific Research Institute of Medicinal and Aromatic Plants (VILAR)
Abstract:
The actual problem of pharmacology is the targeted delivery of chemotherapeutic agents. As the carriers for cytostatics can be used different vector molecules. Special attention deserve the iron oxide nanoparticles due to their availability and properties of paramagnetism. In this paper, the base of conjugate: anticancer agent (doxorubicin) and ultrasmall (5-8nm) nanoparticles of iron oxide complex - magnetite Fe3O4 (FeO x Fe2O3) were investigated. Iron oxide nanoparticles had cytotoxic effect to HeLa cells, inhibited mitochondrial respiration and activated ROS production. Use as surface active agent citrate ( nanocomplex number 3) has a protective effect with respect to mitochondria. These findings point to the prospect of further studies of this nanocomplex as antitumor agent.
Pages: 158-164
References

  1. Wang X., Wang Y., Chen Z.G., Shin D.M. Advances of Cancer Therapy by Nanotechnology // Cancer Res. Treat. 2009. V. 41. № 1. P. 1-11.
  2. Caron W.P., Morgan K.P., Zamboni B.A., Zamboni W.C. A review of study designs and outcomes of phase I clinical studies of nanoparticle agents compared with small-molecule anticancer agents // Clin. Cancer Res. 2013. V. 19. № 12. P. 3309-3315.
  3. Gupta A.K., Gupta M. Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles // Biomaterials. 2005. V. 26. № 13. P. 1565-1573.
  4. Petri-Fink A., Chastellain M., Juillerat-Jeanneret L., Ferrari A. Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells // Biomaterials. 2005. V. 26. № 15. R. 2685-2694
  5. Cole A.J., David A.E., Wang J., Galban C.J., Hill H.L., Yang V.C. // Biomaterials. 2010. V. 32. № 8. P. 2183-2193.
  6. Niu C., Wang Z., Lu G., Krupka T. M., Sun Y., You Y., Song W., Ran H., Li P., Zheng Y. Doxorubicin loaded superparamagnetic PLGA-iron oxide multifunctional microbubbles for dual-mode US/MR imaging and therapy of metastasis in lymph nodes // Biomaterials. 2013. V. 34. № 9. P. 2307-2317.
  7. Yoon H. Y., Saravanakumar G., Heo R., Choi S. H., Song I. C., Han M. H., Kim K., Park J. H., Choi K., Kwon I. C., Park K. Hydrotropic magnetic micelles for combined magnetic resonance imaging and cancer therapy // J. Control Release. 2012. V. 160. № 3. P. 692-698.
  8. Kievit F. M., Wang F. Y., Fang C., Mok H., Wang K., Silber J. R., Ellenbogen R. G., Zhang M. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro // J. Control Release. 2011. V. 152. № 1. P. 76-83.
  9. Chen B., Sun Q., Wang X., Gao F., Dai Y., Yin Y., Ding J., Gao C., Cheng J., Li J., Sun X., Chen N., Xu W., Shen H., Liu D. Reversal in multidrug resistance by magnetic nanoparticle of Fe3O4 loaded with adriamycin and tetrandrine in K562/A02 leukemic cells // Int. J. Nanomedicine. 2008. V. 3. № 2. P. 277-286.
  10. Shimanovskij N.L., Akopdzhanov A.G. Nanochasticzy' oksida zheleza: fizicheskie i farmakologicheskie svojstva. 2012. Izd-vo LAMBERT (Germaniya).
  11. Asai T. Nanoparticle-mediated delivery of anticancer agents to tumor angiogenic vessels // Biol. Pharm. Bull. 2012. V. 35. № 11. P. 1855-1861.
  12. Halestrap A.P. What is the mitochondrial permeability transition pore - // J. Mol. Cell Cardiol. 2009. V. 46. № 6. P. 821-831.
  13. Skulachev V.P. Javleniya zaprogrammirovannoj smerti. Mitoxondrii, kletki i organy': rol' aktivny'x form kisloroda // Sorosovskij obrazovatel'ny'j zhurn. 2001. T. 7. № 6. S. 4-10.
  14. De Oliveira F., Chauvin C., Ronot X., Mousseau M., Leverve X., Fontaine E. Effects of permeability transition inhibition and decrease in cytochrome c content on doxorubicin toxicity in K562 cells // Oncogene. 2006. V. 25. № 18. P. 2646-2655.
  15. Nogueira D.R., Mitjans M., Infante M.R., Vinardell M.P. Comparative sensitivity of tumor and non-tumor cell lines as a reliable approach for in vitro cytotoxicity screening of lysine-based surfactants with potential pharmaceutical applications // Int. J. Pharm. 2011. V. 420. № 1. R. 51-58.
  16. Walter P., Lardy H. A., Johnson D. Antibiotics as tools for metabolic studies. X. Inhibition of phosphoryl transfer reactions in mitochondria by peliomycin, ossamycin, and venturicidin // J. Biol. Chem. 1967. V. 242. № 21. P. 5014-5018.
  17. Basso E., Fante L., Fowlkes J., Petronilli V., Forte M. A., Bernardi P. Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D // J. Biol Chem. 2005. V. 280. № 19. P. 18558-18561.
  18. Kambayashi Y., Tero-Kubota S., Yamamoto Y., Kato M., Nakano M., Yagi K., Ogino K. Formation of superoxide anion during ferrous ion-induced decomposition of linoleic acid hydroperoxide under aerobic conditions // J. Biochem. 2003. V. 134. № 6. P. 903-909.
  19. Fedotcheva N.I., Bykov V.A., Banin V.V., Fedotcheva T.A., Rzheznikov V.M., Shimanovskii N.L. Thiol-dependent sensitization of mitochondria and tumor cells to doxorubicin // J.Clin. Toxic. 2011. V. 8. № 7. http://dx.doi.org/10.4172/2161-0495.S7-002.
  20. Fedotcheva T.A., Kpuglov A.G., Teplova V.V., Fedotcheva N.I., Pzheznikov V.M., Shimanovckij N.L. Vliyanie steroidny'x gormonov na produkcziyu aktivny'x form kisloroda v mitoxondriyax // Biofizika. 2011. T. 57. № 6. P. 1014-1019.
  21. Fedotcheva T.A., Shimanovskij N.L., Kruglov A.G., Teplova V.V., Fedotcheva N.I. Rol' mitoxondrial'ny'x tiolov razlichnoj lokalizaczii v generaczii aktivny'x form kisloroda // Biologicheskie membrany'. 2011. T. 28. № 6. S. 1-8.
  22. Fedotcheva T.A., Odinczova E.V., Banin V.V., Shimanovskij N.L. Farmakologicheskoe znachenie sopryazhennoj regulyaczii sistemy' mnozhestvennoj lekarstvennoj ustojchivosti i mitoxondrial'noj pory' gestagenami // Vestnik Rossijskogo Onkologicheskogo Nauchnogo Centra im. N. N. Bloxina RAMN. 2011. T. 4. S. 34-38
  23. Xu H., Dai W., Han Y., Hao W., Xiong F., Zhang Y., Cao J. M. Differential internalization of superparamagnetic iron oxide nanoparticles in different types of cells // J. Nanosci. Nanotechnol. 2010. V. 10. № 11. P. 7406-7410.
  24. Emilie Giaime, Hiroo Yamaguchi, Clement A. Gautier, Tohru Kitada, Jie Shen. Loss of DJ-1 Does Not Affect Mitochondrial Respiration but Increases ROS Production and Mitochondrial Permeability Transition Pore Opening // PLoS One. 2012. V. 7. № 7. P. 40501-40511.
  25. Fedotcheva N.I., Sokolov A.P., Kondrashova M.N. Nonezymatic formation of succinate in mitochondria under oxidative stress // Free Radic. Biol. 2006. V. 41. № 1. R. 56-64.