350 rub
Journal №5 for 2012 г.
Article in number:
Expression of genes encoding isoforms of thioredoxin and thioredoxin reductase under development of cancer cell resistance to doxorubicin
Authors:
E.V. Kalinina, T.T. Berozov, N.N. Chernov, A.A. Shtil, V.A. Glasunova, M.D. Novichkova, N.K. Nurmuradov
Abstract:
Redox-dependent processes substantially influence the functional activity of many proteins and participate in regulation of the most important vital processes of the cell such as proliferation, differentiation, and apoptosis. Investigation of regulation of intracellular thiol-disulfide balance by thioredoxin/thioredoxin reductase system is actual now. The aim of the research was a study of expression of genes encoding isoforms of thioredoxin (Trx) and thioredoxin reductase (TrxR) under development of cancer cell resistance to doxorubicin (DOX). The cell lines were used in the study: human erythroleukemia K562, human breast carcinoma MCF-7 and human ovarian carcinoma SKOV-3 - DOX-sensitive cells (K562/S, MCF-7/S, SKOV-3 с IC50 - 0,35, 1,1, 0,2 µМ respectively) and DOX-resistant cells (K562/DOX, MCF-7/DOX, SKVLB с IC50 - 5,2, 25, 1,6 µМ respectively). Level of mRNA was determined using qRT-PCR. Electrophoresis of PCR products was conducted in 1,5-2% agarose gel followed by densitometry. Gel analysis was performed using the BioCaptMW software (Vilber Lourmat). Activity of Trx and TrxR was estimated by spectrophotometry assays. Growth of expression of TRX2 and TRXRD1genes was found in DOX-resistant K562/DOX, MCF-7/DOX, SKVLB cells whereas an increase of expression of TRX1gene was detected only in SKVLB cells. Elevation of Trx and TrxR activity was observed in all three types of resistant cells. The growth of expression of genes controlled Trx/TrxR system may be estimated as the important part of adaptive antioxidant response in redox-dependent mechanism of development of the cancer cells resistance to DOX.
Pages: 51-57
References
  1. Holmgren, A. and J. Lu. Thioredoxin and thioredoxin reductase: current research with special reference to human disease // Biochem. Biophys. Res. Commun. 2010. V. 398. № 1. P. 120-124.
  2. Arner E.S. Focus on mammalian thioredoxin reductases - important selenoproteins with versatile functions // Biochim. Biophys. Acta 2009. V. 1790. № 6. P. 495-526.
  3. Berghella A.M., Pellegrini P., Del Beato T. et al. // The potential role of thioredoxin 1 and CD30 systems as multiple pathway targets and biomarkers in tumor therapy // Cancer Immunol. Immunother. 2011. V. 60. P. 1373-1381.
  4. Brigelius-Flohe R., Flohe L. Basic principles and emerging concepts in the redox control of transcription factors // Antioxid. Redox Signal. 2011. V.15. № 8. P. 2335-2381.
  5. Forman H.J., Torres M., Fukuto J. Redox signaling // Mol. Cell. Biochem. 2002. V. 234/235. P.49-62.
  6. Saitoh M., Nishitoh H., Fujii H. et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1 // EMBO J. 1998. V. 17. P. 2596-2606.
  7. Tobiume K., Matsuzawa A., Takahashi T. et al. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis // EMBO Rep. 2001. V. 2. P. 222-228.
  8. Arner E.S. Focus on mammalian thioredoxin reductases - important selenoproteins with versatile functions // Biochim. Biophys. Acta. 2009. V.1790. № 6. P. 495-526.
  9. Nordberg J., Arner E.S.J. Reactive oxygen species, antioxidants and the mammalian thioredoxin system // Free Radic. Biol. Med. 2001. V.31. № 11. P. 1287-1312.
  10. Das K.C.Thioredoxin, a singlet oxygen quencher and hydroxyl radical scavenger: redox independent functions // Biochem. Biophys. Res. Commun. 2000. V. 277. P. 443-447.
  11. Minotti G., Menna P., Salvatorelli E. et al.Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity // Pharmacol. Rev. 2004. V. 56. P. 185-229
  12. Muzutani H., Tada-Oikawa S., Hiraku Y. Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide // Life Sci. 2005. V. 76. P. 1439-145.
  13. Luthman M., Holmgren A. Rat liver thioredoxin and thiore-
    doxin reductase: purification and characterization // Biochemistry.1982. V. 21. P. 6628-6633.
  14. Калинина Е.В., Чернов Н.Н., Саприн А.Н. и соавт. Изменение экспрессии генов антиоксидантных ферментов, гемоксигеназы-1, bcl-2, bcl-xl и уровня активных форм кислорода при формировании резистентности опухолевых клеток к доксорубицину // Биохимия. 2006. Т. 71. № 11. С. 1479-1487.
  15. Калинина Е.В., Березов Т.Т., Чернов Н.Н. и соавт. Экспрессия генов, контролирующих синтез глутатиона, при формировании лекарственной устойчивости опухолевых клеток к доксорубицину // Вопросы биологической, медицинской и фармацевтической химии.2011. №10. С. 35-41.
  16. Janssen-Heininger Y.M., Mossman B.T., Heintz N.H. et al. Redox-based regulation of signal transduction: principles, pitfalls, and promises // Free Radic. Biol. Med. 2008. V. 45. P. 1-17.
  17. Cao Z., Lindsay J.G., Isaacs N.W.Mitochondrial peroxiredoxins.// Subcell. Biochem. 2007. V.44. P. 295-315.
  18. Tanaka T., Hosoi F., Yamaguchi-Iwai Y. et al.Thioredoxin-2 (TRX-2) is an essential gene regulating mitochondria-dependent apoptosis // EMBO J. 2002. V. 21. P. 1695-1703.
  19. Björnstedt M., Hamberg M., Kumar S. et al. Human thioredoxin reductase directly reduces lipid hydroperoxides by NADPH and selenocystine strongly stimulates the reaction via catalytically generated selenols // J. Biol. Chem. 1995. V. 270. P. 11761-11764.