350 rub
Journal №10 for 2012 г.
Article in number:
DNA Visualization During Gel Electrophoresys by Fluorescent Dye Sybr Gold According to Prestaining Protocol
Authors:
N.Yu. Karpechenko, V.K. Gasanova, N.V. Ryadninskaya, E.A. Lesovaya, K.I. Kirsanov, G.A. Belitsky, M.G. Yakubovskaya
Abstract:
Nonsymmetrical cyanine dye SYBR Gold visualized DNA more efficiently as compared to ethidium bromide and other SYBR dyes. It exerts high affinity to DNA, however, it could be easily removed from the biopolymer by standard ethanol precipitation. SYBR Gold does not alter different molecular biology reactions. Unfortunately, application of the SYBR Gold for DNA visualization using post-staining protocol requires its intensive consumption, while DNA pre-staining causes DNA retardation in gel electrophoresis. We demonstrated dye-DNA ratio threshold under which the dye does not influence DNA electrophoretic mobility. High stability of the dye-DNA complexes was demonstrated. When the dye-DNA ratio exceeds the threshold, retardation effect of SYBR Gold in electrophoresis depends on the DNA amounts in samples.
Pages: 69-73
References
  1. TumaR.S., BeaudetM.P., JinX. etal.Characterization of SYBR Gold nucleic acid gel stain: a dye optimized for use with 300-nm ultraviolet transilluminators // Anal. Biochem. 1999. V. 268. P. 278-288.
  2. Zipper H., Brunner H., Bernhagen J., Vitzthum F. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications // Nucleic Acids Res. 2004. 32. P. e103.
  3. Oba R., Kudo Y., Sato N. et al.A new method of competitive reverse transcription polymerase chain reaction with SYBR Gold staining for quantitative analysis of mRNA // Electrophoresis. 2006. V. 27. P. 2865-2868.
  4. Suenaga E., Nakamura H. Prestaining method as a useful tool for the agarose gel electrophoretic detection of polymerase chain reaction products with a fluorescent dye SYBR gold nucleic acid gel stain // Anal Sci. 2005. V. 21. P. 619-623.
  5. Kirsanov K.I., Lesovaya E.A., Yakubovskaya M.G., Belitsky G.A.SYBR Gold and SYBR Green II are not mutagenic in  the Ames test // Mut. Res. 2010. V. 699. P. 1-4.
  6. Singer V.L., Lawlor T.E., Yue S. Comparison of SYBR® Green I nucleic acid gel stain mutagenicity and ethidium bromide mutagenicity in the Salmonella/mammalian microsomal reverse mutation assay (Ames test) // Mut. Res. 1999. V. 439. P. 37-47.
  7. Huang Q., Fu W.-L.Comparative analysis of the DNA staining efficiencies of different fluorescent dyes in preparative agarose gel electrophoresis // Clin. Chem. Lab. Med. 2005. V. 43. P. 841-842.
  8. Гасанова В. К., Ряднинская Н.В., Гайар К. и соавт. Встраивание комплементарных олигонуклеотидов в область (CA/TG) 31-повторов линейных и кольцевых дуплексов ДНК // Молекулярная биология. 2010. Т. 44. P. 520-528.
  9. Neschastnova A.A., Markina V.K., Popenko V.I. et al.Mechanism of spontaneous DNA-DNA interaction of homologous linear duplexes // Biochemistry. 2002. 41. P. 7795-7801.
  10. Benson S.C., Mathies R.A., GIazer A.N.Heterodimeric DNA-binding dyes designed for energy transfer: stability and applications of the DNA complexes // Nucleic Acids Res. 1993. V. 21. P. 5720-5726.
  11. Manning G.S. Comments on selected aspects of nucleic acid electrostatics // Biopolymers. 2003. V. 69. P. 137-143.
  12. Cosa G., Focsaneanu K.-S., McLean J.R.N., McNamee J.P., Scaiano J.C.Photophysical properties of fluorescent DNA-dyes bound to single- and double-stranded DNA in aqueous buffered solution // Photochemistry and Photobiology. 2001. V. 73. P. 585-599.
  13. Haugland R.P. Handbook of Fluorescent Probes and Research Chemicals. Molecular Probes. Inc. M. T. Z. Spence. Eugene. 1996.
  14. Armitage B.A. Cyanine Dye-DNA Interactions: Intercalation, Groove Binding, and Aggregation // Top Curr. Chem. 2005. V. 253. P. 55-76.
  15. Petty J.F., Bordelon J.A., Robertson M.A. Thermodynamic characterization of the association of cyanine dyes with DNA // J. Phys. Chem. 2000. V. 104. P. 7221-7227.