350 rub
Journal №9 for 2011 г.
Article in number:
Water-Soluble Vitamins Determination in Multivitamin Drugs by Capillary Zone Electrophoresis
Authors:
M.N. Bogachuk, O.I. Perederyev, G.V. Ramenskaya
Abstract:
Due to insufficient intake of vitamins with food, needs additional intake of vitamins sources as vitamin- drugs and dietary supplements. For last six years constantly increases range of vitamin and multivitamin drugs was registered. Composition of different vitamin in drugs can change at different times of the year and the people age. So, needs vitamins drugs standardization. Of greatest interest for our study represent a combination of water-soluble vitamins, namely: В1, В2, В6, В12, РР, В5, В9, С, Н (В8). For qualitative and quantitative assay of vitamins in multivitamin preparations in Russia uses different methods of analysis, intend mostly to the study of individual vitamins like: titration, spectrophotometry, polarography, fluorimetry, photoelektrokolorimetriya. These methods do not allow to identify all of the vitamins at one study. Capillary electrophoresis is a relatively new method that allows a lower cost to solve this problem. It is suitable for the separation of different samples and complements the classical separation techniques, such as high performance liquid chromatography and gas chromatography. The method is based on the principle of different rates of migration of charged particles and molecules in static electric field. The aim of our study was to develop a method for qualitative and a quantitative determination of water-soluble vitamins (thiamine chloride hydrochloride, riboflavin, nicotinic acid and nicotinamide, pantothenic acid, pyridoxine hydrochloride, folic acid, ascorbic acid, biotin) by capillary zone electrophoresis in vitamin - mineral complexes. Electrophoretic separation was performed on a system of capillary electrophoresis Agilent 3D CE, DAD, quartz capillary HPCE stndrd cap 64 cm, 50 µm, thermostat temperature of 25 ° C, the effective voltage of 30 kV. Total analysis time 25 minutes. Detection was performed at wavelengths of 210, 254 and 292 nm. Injection was carried out hydrodynamically (50 mbar for 10 s). As a buffer solution using 50 mM borate buffer with 10 % acetonitrile. During the research we have studied various parameters for separation and determination of water-soluble vitamins. Were selected best condition for separation and quantitative determination of all water-soluble vitamins by capillary zone electrophoresis in a single analysis. Validation of the developed method was carried out on the following parameters: selectivity, lower and upper limit of quantitation, accuracy, precision, specificity, linearity and the analytical area. The method developed can be used in pharmaceutical analysis of vitamin preparations.
Pages: 14-23
References
  1. Спиричев В.Б., Шатнюк Л.Н., Поздняковский В.М. Обогащение пищевых продуктов витаминами и минеральными веществами. Наука и технология. Новосибирск: Сиб. унив. изд-во. 2004. 548 с.
  2. Витаминные препараты. Новая популярная медицинская энциклопедия / гл. ред. В.И. Покровский. М.: «ООО Издательство «Энциклопедия». 2004. 768 с.
  3. Burini G. Development of a quantitative method for the analysis of total l-ascorbic acid in foods by high-performance liquid chromatography // Journal of Chromatography A. 2007. № 1154. P. 97-102.
  4. Vidovića S., Stojanovića B., Veljkovića J., Praˇzić-Arsića L., Roglićb G., Manojlović D. Simultaneous determination of some water-soluble vitamins and preservatives in multivitamin syrup by validated stability-indicating high-performance liquid chromatography method // Journal of Chromatography A. 2008. № 1202. P. 155-162.
  5. Vinãs P., López-Erroz C., Balsalobre N., Hernández-Córdoba M. Reversed-phase liquid chromatography on an amide stationary phase for the determination of the B group vitamins in baby foods // Journal of Chromatography A. 2003. № 1007. P. 77-84.
  6. Chávez-Servín J. L., Castellote A. I., Carmen López-Sabater M. Simultaneous analysis of Vitamins A and E in infant milk-based formulae by normal-phase high-performance liquid chromatography-diode array detection using a short narrow-bore column // Journal of Chromatography A. 2006. № 1122. P. 138-143.
  7. Mittermayr  R., Kalman A., Trisconi M.-J., Heudi O. Determination of Vitamin B5 in a range of fortified food products by reversed-phase liquid chromatography-mass spectrometry with electrospray ionization // Journal of Chromatography A. 2004. № 1032. P. 1-6.
  8. Heudi O., Kilinç T., Fontannaz P. Separation of water-soluble vitamins by reversed-phase high performance liquid chromatography with ultra-violet detection: Application to polyvitaminated premixes // Journal of Chromatography A. 2005. № 1070. P. 49-56.
  9. Lebiedzińska A., Marszałł M. L., Kuta J., Szefer P. Reversed-phase high-performance liquid chromatography method with coulometric electrochemical and ultraviolet detection for the quantification of vitamins B1 (thiamine), B6 (pyridoxamine, pyridoxal and pyridoxine) and B12 in animal and plant foods // Journal of Chromatography A. 2007. № 1173. P. 71-80.
  10. Li Jia, Yaling Liu, Yanyan Du, Da Xing. Pressurized capillary electrochromatographic analysis of water-soluble vitamins by combining with on-line concentration technique // Journal of Chromatography A. 2007. № 1154. P. 416-422.
  11. Fung Cheung R. H., Morrison P. D., Small D. M., Marriott P. J. Investigation of folic acid stability in fortified instant noodles by use of capillary electrophoresis and reversed-phase high performance liquid chromatography // Journal of Chromatography A. 2008. № 1213. P. 93-99.
  12. Morten A., Kall J. Determination of total vitamin B6 in foods by isocratic HPLC: a comparison with microbiological analysis // Food Chemistry. 2003. № 82. Р. 315-327.
  13. Perveen S., Yasmin A., Khan K. M. Quantitative simultaneous estimation of water soluble vitamins, riboflavin, pyridoxine, cyanocobalamin and folic acid in neutraceutical products by HPLC // The Open Analytical Chemistry Journal. 2009. №3. Р. 1-5.
  14. Hustad S., Ueland P. M., Schneede J. Quantification of Riboflavin, Flavin Mononucleotide, and Flavin Adenine Dinucleotide in Human Plasma by Capillary Electrophoresis and Laser-induced Fluorescence Detection // Clinical Chemistry. 1999. №45: 6. Р. 862-868.
  15. Fung Cheung R. H., Hughes J. G., Marriott P. J., Small D. M. Investigation of folic acid stability in fortified instant Asian noodles by use of capillary electrophoresis // Food Chemistry. 2009. № 112. Р. 507-514.
  16. Бёккер Ю. Хроматография. Инструментальная аналитика: методы хроматографии и капиллярного электрофореза. М.: Техносфера. 2009. С. 358-400.
  17. Okamoto H., Nakajima T., Ito Y. Simultaneous determination of water-soluble vitamins in a vitamin-enriched drink by an in-capillary enzyme reaction method // Journal of Chromatography A. 2003. № 986. P. 153-161.
  18. Delgado-Zamarreño M.M., González-Maza I., Sánchez-Pérez A., Carabias-Martinez R. Separation and simultaneous determination of water-soluble and fat-soluble vitamins by electrokinetic capillary chromatography // Journal of Chromatography A. 2002. № 953. P. 257-262.
  19. Yin C., Cao Y., Ding S., Wang Y. Rapid determination of water- and fat-soluble vitamins with microemulsion electrokinetic chromatography // Journal of Chromatography A. 2008. № 1193. P. 172-177.
  20. Shabangi M., Sutton J. A. Separation of thiamin and its phosphate esters by capillary zone electrophoresis and its application to the analysis of water-soluble vitamins // Journal of Pharmaceutical and Biomedical Analysis. 2005. № 38. P. 66-71.
  21. Candioti L. V., Robles J. C., Mantovani V. E., Goicoechea H. C. Multiple response optimization applied to the development of a capillary electrophoretic method for pharmaceutical analysis // J. Talanta. 2006. № 69. Р. 140-147.
  22. Арзамаcцев А.П., Садчикова Н.П., Харитонов Ю.Я. Валидация аналитических методов // Фармация. 2006. № 4. С. 8-12.