350 rub
Journal №10 for 2011 г.
Article in number:
The Polyamine Content in Blood of Patients with Angioencephalopathy
Authors:
M.G. Makletsova, T.N. Fedorova, M.J. Maksimova, T.T. Berezov
Abstract:
The disorders of polyamine metabolism are considerate up to date as one of the probable mechanism of the neurons death in the course of brain ischemia. In a experiment on animals it was shown that changes in polyamines metabolism induced by hypoxia and ischemia are connected to the degree of CNS impairment. Focal ischemia of a brain cause an increase of the activites of synthesis enzyme polyamines - ornithine decarboxylase and enzyme of their disintegration - spermidine/spermine-N-acetyltransferase and polyamine oxidases. It leads to maintenance decrease polyamine contents (putrescine, spermidine and spermine) and to accumulation in a brain of a product of their oxidation - 3-aminopropanal, with its subsequent transformation in the acrolein which concerns one of neurotoxic factors of the brain ischemia. Polyamine contents decrease and accumulation of their toxic metabolites, and also activity polyamine oxidases in peripheral blood, consider as a marker reflecting a condition of the brain at an ischemic stroke. At the same time, influence long chronic hypoxia on the exchange polyamines remains not studied. The aim of this study was to investigate the polyamine contents in blood of patients with the diagnosis «angioencephalopathy». It has been surveyed 30 patients (17 men and 13 women) with the diagnosis «angioencephalopathy» at the age from 32 till 65 years. The control group was made by 7 men and 8 women same age. All patients received the base therapy directed on improvement of blood circulation of a brain. In blood plasma and in the erythrocytes polyamine levels defined by HPLC on column Lichrospher RP18, preliminary translating them in benzolic derivatives for identification in UF. In plasma of blood of healthy faces the level of putrecsine and spermidine makes 0,3 and 0,7 µM/l accordingly; the spermine level much more low also makes 0,1 μM/l. In erythrocytes fr μM ee polyamine levels are considerable above, than in blood plasma. and of healthy faces: putrecsine - 1,4 μM/ l, spermidine - 10,8 μM/ l and spermine - 5,4 μM/ l. The samples of blood of 30 patients with the diagnosis «angioencephalopathy» were analyzed. The quantity of polyamines (putrescine, spermidine and spermine) in blood of patients with angioencephalopathy were significantly reduced (up to 37, 50 and 45 % respectively) comparable with that in blood of control group. In experiments on animals it was established that polyamines change in blood exchange infringement in a brain polyamine are a consequence. Ischemia induced polyamines metabolism change in a brain is results in the generation and accumulation of hydrogen peroxide, 3-aminopropanal and acrolein with subsequent activation of the apoptotit cell death. Basic therapy used ordinary in patients with angioencephalopathy the improvement of brain blood circulation has no essential effect on the polyamine content. The probable mechanisms of polyamine metabolic disorders during brain hypoxia and ischemia are briefly discussed.
Pages: 48-53
References
  1. Igarashi K., Kashiwagi K. Use of polyamine metabolites as markers for stroke and renal failure // Methods Mol. Biol. 2011. V. 720. P. 395-408.
  2. Babu G.N., Sailor K.A., Beck J. et.al. Ornithine Decarboxylase Activity in In Vivo and In Vitro Models of Cerebral Ischemia // Neurochem. Research. 2003. V. 28. № 12. P. 1851-1857.
  3. Igarashi K., Kashiwagi K. Modulation of cellular function by polyamines // Int. J. Biochem. Cell Biol. 2011. V. 42. P. 39-51.
  4. Childs A. C., Mehta D.J., Gerner E.W. Polyamine-dependent gene expression // Cell Mol. Life Sci. 2003. V. 60б. P. 1394-1406.
  5. Bachrach U., Wang Y.-C., Tabib A. Polyamines: new cues in cellular signal transduction // Physiology. 2001. V. 16. № 3. P. 106-109.
  6. Schuber F. Influence of polyamines on membraine functions // Biochem. J. 1989. V. 260. P. 1-10.
  7. Paschen W. Polyamine metabolism in different pathological states of the brain // Mol. Chem. Neuropathol. 1992. V. 16. № 3. P. 241-271.
  8. Ivanova S., Botchkina G.I., Al-Abed Y. et al. Cerebral ischemia enhances polyamine oxidation: identification of enzymatically formed 3-aminopropanal as an endogenous mediator of neuronal and glial cell death // J. Exp. Med. 1998. V. 20. P. 327-340.
  9. Saiki R., Nishimura K., Ishii I. et al. Intense correlation between brain infarction and protein-conjugated acrolein // Stroke. 2009. V. 40. P. 3356-3361.
  10. Whiteley W., Tseng M-C., Sandercock P. Blood Biomarkers in the diagnosis of ischemic stroke. A systematic review // Stroke. 2008. V. 39. P. 2902-2909.
  11. Clarkson AN, Liu H, Pearson L, et. al. Neuroprotective effects of spermine following hypoxic-ischemic-induced brain damage: a mechanistic study // FASEB J. 2004. V. 18. № 10. P. 1114-1116.
  12. Morgan D. Determination of polyamines as their benzoylated derivatives by HPLC // Methods Mol. Biol. 1998. V. 79. P. 111-119.
  13. Cohen L.F., Lundgren D.W., Farrell P.M. Distribution of spermidine and spermine in blood from cystic fibrosis patients and control subjects // Blood. 1976. V. 48. P. 469-475.
  14. Ballas S.K., Mohandas N., Marton L.J., Shohet S.B. Stabilization of erythrocyte membranes by polyamines // PNAS. 1983. V. 80. № 7. P. 1942-1946.
  15. Тюлина О.В., Хантельман М., Прокопьева В.Д. и др. Эффект этанола на гемолитическую стабильность эритроцитов // Биохимия. 2000. Т. 65. № 2. С. 218-224.
  16. Фёдорова Т.Н., Беляев М.С., Трунова О.А., Гнездицкий В.В., Максимова М.Ю., Болдырев А.А. Нейропептид карнозин увеличивает устойчивость липопротеинов и эритроцитов крови и эффективность иммунокомпетентной системы у пациентов с хронической дисциркуляторной энцефалопатией // Биологические мембраны. 2008. Т. 25. № 6. С. 479-483.
  17. Niranen K., Pietial M., Pietial T.J. et. al. // J. Biol. Chem. 2002. V. 277. P. 25323-25328.
  18. Lju P., Gupta N., Jing Y., Zhang H. Age-related changes in  polyamines in memory-associated brain structures in rats // Neuroscience. 2008. V. 155. № 3. P. 789-796.
  19. Velloso N.A., Dalmolin G..D., Gomes G..M., Rubin M.A., Canas P.M., Cunha R.A. Spermine improves recognition memory deficit in a rodent model of Huntington-s disease // Neurobiol Learn Mem. 2009. V. 92. P. 574-580.
  20. Kashiwagi K., Pahk A.J., Masuko T., Igarashi K., Williams K. Block and modulation of N-methyl-D-aspartate receptors by polyamines and protons: role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits.2 // Mol. Pharmacol. 1997. 1997. V. 52. P. 701-713.
  21. Siddiqui F., Zafar Iqbal Z. Regulation of N-methyl-D-aspartate receptor-mediated calcium transport and norepinephrine release in rat hippocampus synaptosomes by polyamines// Neurochem. Research. 1994. V. 19. № 11. P. 1421-1429.