350 rub
Journal Technologies of Living Systems №4 for 2025 г.
Article in number:
Proteomic marker ST2 and T1-, T2-mapping of the heart in the study of the state of the myocardium after landing at the end of long-term space flights
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700997-202504-01
UDC: 57.042, 577.2
Authors:

L.Kh. Pastushkova1, I.N. Goncharov2, E.S. Luchitskaya3, A.G. Goncharova4, D.N. Kashirina5, A.M. Nosovsky6, K.S. Kireev7, I.M. Larina8

1–6,8 FSBI State Scientific Center of the Russian Federation – Institute of Biomedical Problems of the Russian Academy of Sciences (Moscow, Russia)

7 FSBI “Research Institute of the Gagarin Cosmonaut Training Center” (Russia)

1 lpastushkova@mail.ru, 2 igorgoncharov@gmail.com, 3 e.luchitskaya@gmail.com, 4 goncharova.anna@gmail.com, 5 daryakudryavtseva@mail.ru, 6 collega1952@yandex.ru, 7 kir-kireev@yandex.ru, 8 irina.larina@gmail.com

 

Abstract:

The problem statement is relevant to study the influence of long-term space flights (SF) and landing on the levels of the proteomic marker ST2. The aim of the work is to study the relationship between the proteomic marker ST2 and the results of cardiac MRI after landing at the end of long-term six-month and annual SFs of Russian cosmonauts, with subsequent comparison between them.

Venous blood samples of 9 cosmonauts were studied before and after the SF to the ISS. Analysis of variance of ST2 protein levels in all cosmonauts revealed a significant increase in its concentration on the first day after the flight. The obtained data were compared with T1, T2 - mapping of the heart at the end of long SFs. On the 7th day of the recovery period, the content of ST2 protein decreased, approaching the background value. According to the results of mapping on the 4th day after the SF, changes in the structure of myocardial zones were revealed, corresponding to the direction of the landing overload vector.

The obtained results indicate transient myocardial overstretching during landing and an increased risk of cardiac fibrosis in the late stages after the space flight.

Pages: 5-14
References
  1. Pastushkova L.K., Goncharova A.G., Kashirina D.N. et al. Influence of factors of 21-day head-down bed rest on the blood level of myocardial extensibility biomarker ST2. Human Physiology. 2023. V. 49. № 6. P. 605–608.
  2. Goncharova A.G., Pastushkova L.H., Kireev K.S. i dr. Vliyanie faktorov dlitel'nyh kosmicheskih poletov i prizemleniya na urovni biomarkera serdechnoj nedostatochnosti i riska razvitiya fibroza sST2. Pilotiruemye polety v kosmos. 2023. T. 46. № 1. S. 96–103. (in Russian).
  3. Mulvagh S.L., Charles J.B., Riddle J.M. et al. Echocardiographic evaluation of the cardiovascular effects of shortduration spaceflight. J. Clin. Pharmacol. 1991. V. 31. P. 1024–1026. DOI: 10.1002/j.1552-4604.1991.tb03666.x
  4. Summers R.L., Martin D.S., Platts S.H. et al. Ventricular chamber sphericity during spaceflight and parabolic flight intervals of less than 1. J. Aviat. Space Environ. Med. 2010. V. 81(5). P. 506–510.
  5. Perhonen M.A., Franco F., Lane L.D. et al. Cardiac atrophy after bed rest and spaceflight. J. Appl. Physiol. 2001. V. 91. P. 645–653. DOI: 10.1152/jappl.2001.91.2.645
  6. Hoffler G.W., Wolthuis R.A., Johnson R.L. Apollo space crew cardiovascular evaluations. Aerosp. Med. 1974. V. 45(8). P. 807–823.
  7. Stuart L., Michael S., Steven L., Brandon M. Evidence Report: Risk of Cardiac Rhythm. Problems During Spaceflight. NTRS – NASA Technical Reports Server. 2017. https://ntrsnasagov/citations/20170005625.
  8. Summers R.L., Martin D.S., Meck J.V., Coleman T.G. Computer systems analysis of spaceflight induced changes in left ventricular mass. Comput. Biol. Med. 2007. V. 37(3). P. 358–363.
  9. Bungo M.W., Goldwater D.J., Popp R.L. et al. Echocardiographic evaluation of space shuttle crewmembers. J. Appl. Physiol. 1987. V. 62. P. 278–283.
  10. Connor M.K., Hood D.A. Effect of microgravity on the expression of mitochondrial enzymes in rat cardiac and skeletal muscles. Journal of Applied Physiology. 1985. V. 84(2). P. 593–598.
  11. Wnorowski A., Sharma A., Chen H. et al. Effects of Spaceflight on Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Structure and Function. Stem Cell Reports. 2019. V. 13(6). P. 960–969.
  12. Kwon O., Tranter M., Jones W.K. et al. Differential translocation of nuclear factor-kappaB in a cardiac muscle cell line under gravitational changes. J. Biomech. Eng. 2009. V. 131(6). P. 3128718.
  13. Stodieck L., Kearns-Jonker M. Simulated Microgravity Exerts an Age-Dependent Effect on the Differentiation of Cardiovascular Progenitors Isolated from the Human Heart. PLoS One. 2015. V. 10(7). P. e0132378. DOI: 10.1371/journal.pone.0132378
  14. Pan Y.K., Li C.F., Gao Y. et al. Effect of miR-27b-5p on apoptosis of human vascular endothelial cells induced by simulated microgravity. Apoptosis. 2020. V. 25(1-2). P. 73–91.
  15. Camberos V., Baio J., Bailey L. et al. Effects of Spaceflight and Simulated Microgravity on YAP1 Expression in Cardiovascular Progenitors: Implications for Cell-Based Repair. Int. J. Mol. Sci. 2019. V. 20(11). P. 2742. DOI: 10.3390/ijms20112742
  16. Larina I.M., Pastushkova L.Kh., Kononikhina A.S. et al. Piloted space flight and post-genomic technologies. REACH. 2019. V. 16. DOI: 10.1016/j.reach.2020.100034
  17. Gutberlet M., Lücke C. Original versus 2018 Lake Louise Criteria for Acute Myocarditis Diagnosis: Old versus. New Radiol. Cardiothorac. Imaging. 2019. V. 1(3). P. e190150. DOI: 10.1148/ryct.2019190150
  18. Ferreira V.M., Schulz-Menger J., Holmvang G. et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J. Am. Coll. Cardiol. 2018. V. 72(24). P. 3158–3176. DOI: 10.1016/j.jacc.2018.09.072
  19. Kurbatov V.P., Obedinskij A.A., Obedinskaya N.R. i dr. Prakticheskaya znachimost' metoda magnitno-rezonansnoj tomografii s farmakologicheskim stress-testom dlya ocenki perfuzii miokarda u bol'nyh ishemicheskoj bolezn'yu serdca posle endo-vaskulyarnoj rekanalizacii hronicheskoj okklyuzii pravoj koronarnoj arterii. Sibirskij medicinskij zhurnal. 2015. T. 30. № 3. S. 29–33. (in Russian).
  20. Baev M.S., Trufanov G.E., Ryzhkov A.V., Anpilogova K.S. T1-kartirovanie miokarda: fizicheskie osnovy i obshchie voprosy primeneniya. Sovremennye problemy nauki i obrazovaniya. 2021. № 6. URL: https://science-education.ru/ru/article/view?id=31235 (in Russian).
  21. Bogomyakova O.B., Tavluj M.A., Savelov A.A. MR-metodika T2-kartirovaniya v ocenke stepeni aktivnosti processa pri vospa-litel'nyh miopatiyah. Kompleksnye problemy serdechno-sosudistyh zabolevanij. 2020. T. 9(3). S. 21–29. https://doi.org/10.17802/2306-1278-2020-9-3-21-29 (in Russian).
  22. Triadyaksa P., Oudkerk M., Sijens P.E. Cardiac T2 mapping: Techniques and clinical applications. J. Magn. Reson. Imaging. 2020. V. 52(5). P. 1340–1351. DOI: 10.1002/jmri.27023
  23. Ojji D.B., Opie L.H., Lecour S. et al. Relationship between left ventricular geometry and soluble ST2 in a cohort of hypertensive patients. The Journal of Clinical Hypertension. 2013. V. 15 (12). P. 899–904.
  24. Iskovitz I., Kassemi M., Thomas J.D. Impact of weightlessness on cardiac shape and left ventricular stress/strain distributions. J. Biomech. Eng. 2013. V. 135(12). P. 4025464.
  25. Ferdous A., Battiprolu P.K., Ni Y.G. et al. FoxO, autophagy, and cardiac remodeling. J. Cardiovasc. Transl. Res. 2010. V. 3(4). P. 355–364.
Date of receipt: 07.08.2025
Approved after review: 08.10.2025
Accepted for publication: 20.10.2025