Ya.A. Turovskiy1, P.D. Merkutova2, R.A. Tokarev3
1 Institute of Management Problems named after. V.A. Trapeznikova RAS (Voronezh, Russia)
1–3 Voronezh State University (Voronezh, Russia)
1 yaroslav_turovsk@mail.ru, 2 empty.satana@gmail.com, 3 tokarev0801@mail.ru
The majority of subjects reacted to a random signal in the feedback channel by increasing correlation coefficients compared to the situation when sound stimulation was provided as a marker of correlation coefficient values below the lower quartile of the background recording. Distinct profiles were obtained for comparing the initial states with each other, as well as in the case when the feedback channel randomly implemented sound stimulation. In other cases, profiles reflecting the grouping of individual features of the subjects were obtained. When comparing the background sequence of correlation coefficients with the sequence of correlation coefficients obtained during sound stimulation, two statistically different groups were revealed, one of which exceeded the background values during sound stimulation, while the other group was lower. Consequently, the first reaction can be characterized as “synchronization” and the second as “desynchronization”. At the same time, a specific reaction was observed only for the desynchronization type of reaction. The analysis of clusters showed that one of the groups of reactions demonstrates the dynamics according to which the sound stimulation will stop. The second cluster is characterized by nonspecific growth of correlation coefficient values regardless of the nature of stimulation. The EEG response to changes in the characteristics of phonostimulation in the feedback channel does not depend on whether these effects are aimed at increasing or decreasing the correlation coefficients, but depends on the very fact of the presence of this connection. On the basis of revealing individual typological EEG reactions to sound stimulation through the feedback channel, it was revealed that the EEG reaction, if any, to changes in the characteristics of phonostimulation in the feedback channel does not depend on whether these effects are aimed at increasing or decreasing the correlation coefficients, but depends on the very fact of the presence of this connection.
Turovskiy Ya.A., Merkutova P.D., Tokarev R.A. Individual correlation patterns of an electroencephalogram as a reaction to an unconscious biofeedback. Technologies of Living Systems. 2025. V. 22. № 3. Р. 27-33. DOI: https://doi.org/10.18127/j20700997-202503-03 (In Russian).
- Kostandov E.A. Funkcional'naya asimmetriya polusharij mozga i neosoznavaemoe vospriyatie. M.: Nauka. 1983. 240 s. (in Russian).
- Filippova M.G. Vospriyatie bez osoznaniya i celesoobraznost' ego uchastiya v psihodiagnosticheskom issledovanii. Vestnik Sankt-Peterburgskogo universiteta. Sociologiya. 2008. № 2. S. 45–57. (in Russian).
- Shelepin YU.E., Harauzov A.K., Zhukova O.V. Vospriyatie neosoznavae-myh zritel'nyh. Obrabotka i integraciya informacii v sensornyh sistemah: ot vneshnego signala k slozhnomu obrazu: Tezisy dokladov nauchnoj konferencii, posvyashchennoj 90-letiyu so dnya rozhdeniya aka-demika I.A. SHeveleva, Moskva, 29–30 sentyabrya 2022 g. M.: OOO "Kvant Media". 2022. S. 111–117. DOI: 10.24412/cl-36975-2022-1-111-117 (in Russian).
- Turovskij YA.A., Borzunov S.V., Danilova A.V., Glagoleva E.P. Dina-mika neproizvol'nogo formirovaniya korrelyacionnyh patternov EEG po mekhanizmu biologicheskoj obratnoj svyazi. Ul'yanovskij mediko-biologicheskij zhurnal. 2020. № 2. S. 90–98. (in Russian).
- Yumatov E.A., Sushkova L.T. Principial'naya vozmozhnost' ob"ek-tivnoj registracii psihicheskoj deyatel'nosti mozga cheloveka na os-nove vejvletnogo analiza elektroencefalogrammy. Tekhnologii zhivyh sistem. 2023. T. 20. № 2. S. 27–33. DOI: https://doi.org/10.18127/j20700997-202302-03 (in Russian).
- Dolzhenko N.N., Koroleva V.V., Koroleva M.V. Matematicheskij analiz EEG pri izuchenii funkcij sluhovogo vospriyatiya. Vestnik Chelyabinskoj oblastnoj klinicheskoj bol'nicy. 2021. № 1(49). S. 35–40. (in Russian).
- Kulaichev A.P. Metod analiza korrelyacionnoj sinhronnosti EEG i ego vozmozhnosti. Zhurnal vysshej nervnoj deyatel'nosti im. I.P. Pavlova. 2011. T. 61. № 4. S. 485–498. (in Russian).
- Glanc S.A. Mediko-biologicheskaya statistika: Per. s angl. M.: Prak-tika. 1998. 459 s. (in Russian).
- Akhtyamov P.I., Rodionov I.V. On Estimation of the Scale and Location Parameters of Distribution Tails. J. Math. Sci. 2022. № 262. S. 406–424. DOI: 10.1007/s10958-022-05824-w
- Runion R. Spravochnik po neparametricheskoj statistike. Sovre-mennyj podhod. Finansy i statistika. Moskva. 1982. 198 s. (in Russian).
- Bantikova O.I., Sedova E.N., CHudinova O.S. Metody klasterno-go analiza. Klassifikaciya bez obucheniya (neparametricheskij slu-chaj): metodicheskie ukazaniya k laboratornomu praktikumu, kursovoj rabote, diplomnomu proektirovaniyu i samostoyatel'noj rabote stu-dentov. Pod red. A. G. Rennera. Orenburg: GOU OGU. 2011. 93 s. (in Russian).
- Shafir M.A. Analiz sootvetstvij: predstavlenie metoda. So-ciologiya: metodologiya, metody, matematicheskoe modelirovanie. 2009. № 28. S. 29–44. (in Russian).
- Turovskij YA.A., Borzunov S.V., Vahtin A.A. Algoritm korrekcii statisticheskogo ocenivaniya s uchetom effekta mnozhestvennyh srav-nenij na osnove gruppirovki rezul'tatov testov. Programmnaya inzheneriya. 2022. T. 13. № 3. S. 148–152. DOI: 10.17587/prin.13.148-152 (in Russian).

