A.A. Balandin1, A.N. Zhigulev2, I.A. Balandina3, E.R. Saidasheva4, P.A. Shchipicyna5
1–5 E.A. Vagner Perm State Medical University (Perm, Russia)
1 balandinnauka@mail.ru, 2 anzhigulev@inbox.ru, 3 balandina_ia@mail.ru, 4 Saidasheva2017@yandex.ru, 5 lukaswalker0109@gmail.com
The brain is an organ that is unique in terms of the complexity of its structure, and scientists are interested in its multi–component three-dimensional tissue organization and multilayer cytoarchitectonics. Its anatomical and physiological characteristics remain the subject of in-depth study in medicine, neuroscience and psychology. The complexity of brain research for neuromorphologists lies in the fact that it is a complex hierarchical modular organization that varies depending on functional states. The structural and functional systems of the brain have the uniqueness of their neural networks, their own conditional autonomy and are described by modern scientists as structures operating on the principle of a "small world", however, their high degree of interconnectedness at both the biochemical and cellular levels, on the scale of the entire brain, creates a unique multimodal system of many subsystems. Meanwhile, it is precisely because of such a bizarre shape of the brain that the question arises: "How to methodically correctly measure this organ"?
The purpose of the work is to summarize the data of the scientific literature on the methods and techniques of lifetime morphometry of the brain developed to date with the possibility of accurately determining its size.
The data presented in the scientific literature on lifetime morphometry of the brain indicate the existence of an extensive list of methods. The most commonly used of them in modern medical practice are magnetic resonance imaging, computed tomography and ultrasound. The techniques, each of which has its own advantages, include cephalometry using a laser scanner, three-dimensional photographing, optimized stereological methods of counting points and planimetry techniques, as well as the MALF technique, statistical parametric mapping, FreeSurfer and ultrasound assessment of the total volume of the brain in 3D and 2D measurements.
Balandin A.A., Zhigulev A.N., Balandina I.A., Saidasheva E.R., Shchipicyna P.A. Lifetime morphometry of the brain: methods and procedures. Technologies of Living Systems. 2025. V. 22. № 3. Р. 17-26. DOI: https://doi.org/10.18127/j20700997-202503-02 (In Russian).
- Efimova O.I., Balaban P.M., Hajtovich F.E. Novye podhody k molekulyarnomu kartirovaniyu mozga: trekhmernaya cikliche-skaya immunogistohimiya i opticheskoe prosvetlenie. Zhurnal vysshej nervnoj deyatel'nosti im. I.P. Pavlova. 2018. T. 68. № 6. S. 747–758. DOI 10.1134/S0044467718060059 (in Russian).
- Balandin A.A., ZHeleznov L.M., Balandina I.A. Vozrastnye izmeneniya golovnogo ukazatelya i razmerov talamusov u me-zocefalov. Chelovek i ego zdorov'e. 2021. T. 24. № 4. S. 52–58. DOI 10.21626/vestnik/2021-4/07 (in Russian).
- Wang B., Yuan Y., Yang L. et al. Multi-hierarchy Network Configuration Can Predict Brain States and Performance. Journal Cognitive Neuroscience. 2024. V. 36. № 8. P. 1695–1714. DOI: 10.1162/jocn_a_02153
- Just M.A., Varma S. The organization of thinking: what functional brain imaging reveals about the neuroarchitecture of complex cognition. Cognitive Affective Behavioral Neuroscience. 2007. V. 7. № 3. P. 153–191. DOI: 10.3758/cabn.7.3.153
- Finlay B.L. The Multiple Contexts of Brain Scaling: Phenotypic Integration in Brain and Behavioral Evolution. Brain Behavior Evolution. 2022. V. 97. № 1-2. P. 83–95. DOI: 10.1159/000521984
- Nebe S., Reutter M., Baker D.H., et al. Enhancing precision in human neuroscience. ELife. 2023. V. 12. DOI: 10.7554/eLife.85980
- Finlay L.M. Craniometry and cephalometry: a history prior to the advent of radiography. Angle Orthod. 1980. V. 50. № 4. P. 312–321. DOI: 10.1043/0003-3219(1980)050<0312:CACAHP>2.0.CO;2
- Rössner S. Paul Pierre Broca (1824-1880). Obesity Reviews. 2007. V. 8. № 3. P. 277. DOI: 10.1111/j.1467-789X.2007.00303.x
- Nüsslin F. Wilhelm Conrad Röntgen: The scientist and his discovery. Physica Medica. 2020. V. 79. P. 65–68. DOI: 10.1016/j.ejmp.2020.10.010
- Leonardi R., Giordano D., Maiorana F., Spampinato C. Automatic Cephalometric Analysis: A Systematic Review. Angle Orthod. 2008. V. 78(1). P. 145–151. DOI: 10.2319/120506-491.1
- Balandin A.A., Zheleznov L.M., Balandin V.A., Balandina I.A. Korrelyacionnaya vzaimosvyaz' mezhdu vozrastnoj dinamikoj poperechnogo razmera mozzhechka i golovnogo ukazatelya u mezocefalov. Vestnik Novgorodskogo gosudarstvennogo universiteta. 2021. № 3(124). S. 6–10. DOI 10.34680/2076-8052.2021.3(124).6-10 (in Russian).
- Bajbakov S.E., Bahareva N.S., CHigrin S.V. i dr. Gendernye razlichiya bilateral'noj asimmetrii polusharij golovnogo mozga u detej perioda vtorogo detstva. Innovacionnaya medicina Kubani. 2023. T. 1. S. 53–57. DOI: 10.35401/2541-9897-2023-26-1-53-57 (in Russian).
- Arda K.N., Akay S. The Relationship between Corpus Callosum Morphometric Measurements and Age/Gender Characteristics: A Comprehensive MR Imaging Study. Journal of Clinical Imaging Science. 2019. V. 9(33). DOI: 10.25259/JCIS-13-2019
- Xiao Y., Rivaz H., Chabanas M. et al. Evaluation of MRI to Ultrasound Registration Methods for Brain Shift Correction: The CuRIOUS2018 Challenge. IEEE Trans Med Imaging. 2020. V. 39. № 3. Р. 777–786. DOI: 10.1109/TMI.2019.2935060
- Hazlett H.C., Poe M., Gerig G. et al. Early Brain Overgrowth in Autism Associated with an Increase in Cortical Surface Area Before Age 2. Archives of General Psychiatry. 2011. V. 68. № 5. P. 467–476. DOI: 10.1001/archgenpsychiatry.2011.39
- Cauley K.A., Hu Y., Fielden S.W. Aging and the Brain: A Quantitative Study of Clinical CT Images. American Journal of Neuroradiology. 2020. V. 41. № 5. P. 809–814. DOI: 10.3174/ajnr.A6510
- Staffa S.J., Kohane D.S., Zurakowski D. Quantile Regression and Its Applications: A Primer for Anesthesiologists. Anesthesia and Analgesia. 2019. V. 128. № 4. P. 820–830. DOI: 10.1213/ANE.0000000000004017
- Balandin A.A., ZHeleznov L.M., Balandina I.A. Vozrastnye izmeneniya v nizhnej polulunnoj dol'ke mozzhechka u muzhchin. Nauka molodyh (Eruditio Juvenium). 2020. T. 8. № 3. S. 337–344. DOI:10.23888/HMJ202083337-344 (in Russian).
- Terstege D.J., Addo-Osafo K., Campbell Teskey G., Epp J.R. New neurons in old brains: implications of age in the analysis of neurogenesis in post-mortem tissue. Molecular Brain. 2022. V. 15(1). P. 38. DOI: 10.1186/s13041-022-00926-7
- Svennerholm L., Boström K., Jungbjer B. Changes in weight and compositions of major membrane components of human brain during the span of adult human life of Swedes. Acta Neuropathol. 1997. V. 94. № 4. P. 345–352. DOI: 10.1007/s004010050717
- Ryskulova G.O., Prmantaeva B.A., Rysқulov A.E., Bajdullaeva G.E. Analiz vozmozhnosti PET/KT s 18F- FDG i PET/KT S 18F-FET v diagnostike opuholej golovnogo mozga. Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij. 2017. T. 9. (in Russian).
- Sidorina A.S., SHeriev S.R., Maslov N.E. i dr. Magnitno-rezonansnaya tomografiya v diagnostike glial'nyh opuholej golovnogo mozga v svete novoj klassifikacii opuholej CNS. Rossijskij zhurnal personalizirovannoj mediciny. 2023. T. 3. № 6. S. 50–60. DOI: 10.18705/2782-3806-2023-3-6-50-60 (in Russian).
- Arablinskij A.V. Differencial'naya diagnostika netravmaticheskih ostryh zabolevanij golovnogo mozga v usloviyah priemnogo otdeleniya s ispol'zovaniem KT i MRT. Russian Electronic Journal of Radiology. 2020. T. 10. № 4. S. 60–74. DOI: 10.21569/2222-7415-2020-10-4-60-74 (in Russian).
- Chabanova E., Larsen L., Løgager V.B. et al. Use og marnetic resonance imaging. Ugeskrift of Laeger. 2014. V. 176. № 1. P. 50–54.
- Lawal O., Regelous P., Omiyi D. Supporting claustrophobic patients during Magnetic Resonance Imaging examination - the patient perspective. Radiography (Lond). 2023. V. 29. № 6. P. 1108–1114. DOI: 10.1016/j.radi.2023.09.008
- Stoleriu M.G., Gerckens M., Obereisenbuchner F., et al. Automated quantitative thin slice volumetric low dose CT analysis predicts disease severity in COVID-19 patients. Clinical Imaging. 2021. V. 79. P. 96–101. DOI: 10.1016/j.clinimag.2021.04.008
- Pearce M.S., Salotti J.A., Little M.P. et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. The Lancet. 2012. V. 380(9840). P. 499–505. DOI: 10.1016/S0140-6736(12)60815-0
- Burkhardt W., Schneider D., Hahn G. et al. Non-invasive estimation of brain-volume in infants. Early Hum Dev. 2019. V. 132. P. 52–57. DOI: 10.1016/j.earlhumdev.2019.03.020
- Tu L., Porras A.R., Enquobahrie A. et al. Automated Measurement of Intracranial Volume Using Three-Dimensional Photography. Plast. Reconstr. Surg. 2020. V. 146(3). P. 314e–323e. DOI: 10.1097/PRS.0000000000007066
- Sahin B., Acer N., Sonmez O.F. et al. Comparison of four methods for the estimation of intracranial volume: a gold standard study. Clin. Anat. 2007. V. 20(7). P. 766–773. DOI: 10.1002/ca.20520
- Shang X., Carlson M.C., Tang X. Quantitative comparisons of three automated methods for estimating intracranial volume: A study of 270 longitudinal magnetic resonance images. Psychiatry Res. Neuroimaging. 2018. V. 274. P. 23–30. DOI: 10.1016/j.pscychresns.2018.02.005
- Benavente-Fernández I., Ruiz-González E., Lubian-Gutiérrez M. et al. Ultrasonographic Estimation of Total Brain Volume: 3D Reliability and 2D Estimation. Enabling Routine Estimation During NICU Admission in the Preterm Infant. Front Pediatr. 2021. V. 9. P. 708396. DOI: 10.3389/fped.2021.708396

