K.N. Sultanova1, I.S. Neofitov2, A.A. Bilyalova3, N.S. Filatov4, M.A. Titova5, D.I. Andreeva6, A.P. Kiyasov7
1–7 Institute of Fundamental Medicine and Biology of Kazan (Volga region) Federal University (Kazan, Russia)
1 kasana555_07@mail.ru, 2 ilya.neofitov.00@mail.ru, 3 alinayakupova96@yandex.ru, 4 qwerdeewrd@gmail.com,
5 maalti@mail.ru, 6 goober@mail.ru, 7 kiassov@mail.ru
Postnatal organ injury initiates regeneration, and during regeneration, the main intercellular interactions usually repeat histogenesis. In order to generate cell therapy products, it is necessary to understand the mechanisms of organ morphogenesis and the main stages of intercellular communication. The laboratory mouse is the most commonly used experimental model, but this type of rodent has a short gestation period. The spiny mouse (Acomys cahirinus) has a prenatal development period of 39-40 days.
The aim of this work was to describe the prenatal ontogenesis of the spiny mouse (Acomys) in order to confirm that this species is a more convenient model for prenatal development research. The specific focus was on pancreatic morphogenesis.
Spiny mice were used in this study at the 15th, 17th, 18th, 19th, 20th, 21st, 22nd, 24th, 28th, 30th, 32nd, 34th and 38th embryonic days. Paraffin sections were stained immunohistochemically with antibodies against PDX1, glucagon, insulin, somatostatin and amylase.
PDX1-positive pancreatic progenitor cells were identified at the 15th gestational day in the ventral and dorsal buds of the foregut endoderm. Fusion of these two pancreatic buds occurs at the 17th embryonic day. The sequence of pancreatic endocrinocytes formation is as follows: glucagon-positive cells were found at the 15th gestational day, somatostatin-positive cells – at the 17th day, and insulin-positive cells – at the 22nd day of prenatal development. The formation of the spiny mouse pancreas begins earlier and the organ development lasts longer than the same processes in other laboratory mice. The data presented here provide a valuable resource for further research into pancreatic cells differentiation and islets of Langerhans formation.
The results of our research on the spiny mouse pancreas prenatal morphogenesis can be utilized to analyze the processes of endocrinocyte development, to investigate the effects of teratogenic factors on pancreas formation and development, and to model pancreatic pathology.
Sultanova K.N., Neofitov I.S., Bilyalova A.A., Filatov N.S., Titova M.A., Andreeva D.I., Kiyasov A.P. A novel experimental model for the investigation of histo- and organogenesis in laboratory animals with a focus on the pancreas. Technologies of Living Systems. 2025. V. 22. № 2. Р. 66-73. DOI: https://doi.org/10.18127/j20700997-202502-07 (In Russian).
- Iyer J., Mhatre S.D., Gilbert R., Bhattacharya S. Multi-system responses to altered gravity and spaceflight: insights from Drosophila melanogaster. Neurosci. Biobehav. Rev. 2022. V. 142. P. 104880. DOI: 10.1016/j.neubiorev.2022.104880
- Oiwa Y., Oka K., Yasui H. et al. Characterization of brown adipose tissue thermogenesis in the naked mole-rat (Heterocephalus glaber), a heterothermic mammal. Sci. Rep. 2020. V. 10(1). P. 19488. DOI: 10.1038/s41598-020-74929-6
- González-Orozco J.C., Escobedo-Avila I., Velasco I. Transcriptome profiling after early spinal cord injury in the Axolotl and its comparison with rodent animal models through RNA-Seq data analysis. Genes (Basel). 2023. V. 14(12). P. 2189. DOI: 10.3390/genes14122189
- Londono R., Tighe S., Milnes B. et al. Single cell sequencing analysis of lizard phagocytic cell populations and their role in tail regeneration. J. Immunol. Regen. Med. 2020. V. 8. P. 100029. DOI: 10.1016/j.regen.2020.100029
- Mireckaya E.I. Biomedicinskie issledovaniya na cheloveke: pravovye i moral'no-eticheskie problemy. YUridicheskaya nauka i praktika: Vestnik Nizhegorodskoj akademii MVD Rossii. 2014. T. 2. № 26. S. 235–237. (in Russan).
- Jørgensen M.C., Ahnfelt-Rønne J., Hald J. et al. An illustrated review of early pancreas development in the mouse. Endocr. Rev. 2007. V. 28(6). P. 685–705. DOI: 10.1210/er.2007-0016
- Pinheiro G., Prata D.F., Araújo I.M., Tiscornia G. The African spiny mouse (Acomys spp.) as an emerging model for development and regeneration. Lab. Anim. 2018. V. 52(6). P. 565–576. DOI: 10.1177/0023677218769921
- Shafrir E., Ziv E., Kalman R. Nutritionally induced diabetes in desert rodents as models of type 2 diabetes: Acomys cahirinus (spiny mice) and Psammomys obesus (desert gerbil). ILAR J. 2006. V. 47(3). P. 212–224. DOI: 10.1093/ilar.47.3.212
- Ivanov E.V., Ahmetshina M.R., Gizatulina A.R. i dr. Analiz associacij mezhdu pokazatelyami perifericheskogo krovotoka i metabolicheskim statusom u pacientov s saharnym diabetom 2-go tipa. Tekhnologii zhivyh sistem. 2024. T. 21. № 1. S. 20–28. DOI: 10.18127/j20700997-202401-02 (in Russian).
- Narkevich A.N., Mamedov T.H., Dzyuba D.V. Raspoznavanie diabeticheskoj retinopatii na cifrovyh izobrazheniyah glazno-go dna s primeneniem svertochnyh nejronnyh setej glubokogo obucheniya. Tekhnologii zhivyh sistem. 2023. T. 20. № 1. S. 55–61. DOI: 10.18127/j20700997-202301-06 (in Russian).
- Dickinson H., Walker D.W., Cullen-McEwen L. et al. The spiny mouse (Acomys cahirinus) completes nephrogenesis before birth. Am. J. Physiol. Renal. Physiol. 2005. V. 289(2). P. F273–279. DOI: 10.1152/ajprenal.00400.2004
- Jonsson J., Carlsson L., Edlund T., Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 1994. V. 371(6498). P. 606–609. DOI: 10.1038/371606a0
- Wessells N.K., Cohen J.H. Early pancreas organogenesis: morphogenesis, tissue interactions, and mass effects. Dev. Biol. 1967.
V. 15(3), P. 237–270. DOI: 10.1016/0012-1606(67)90042-5 - Spooner B.S., Walther B.T., Rutter W.J. The development of the dorsal and ventral mammalian pancreas in vivo and in vitro. J. Cell. Biol. 1970. V. 47(1). P. 235–246. DOI: 10.1083/jcb.47.1.235
- Pictet R.L., Clark W.R., Williams R.H., Rutter W.J. An ultrastructural analysis of the developing embryonic pancreas. Dev. Biol. 1972. V. 29(4). P. 436–467. DOI: 10.1016/0012-1606(72)90083-8
- Pan F.C., Wright C. Pancreas organogenesis: from bud to plexus to gland. Dev. Dyn. 2011. V. 240(3). P. 530–565. DOI: 10.1002/dvdy.22584
- de Gasparo M. Accumulation of pancreas-specific products during organogenesis of Acomys cahirinus. Gen. Comp. Endocrinol. 1980. V. 41(4). P. 499–505. DOI: 10.1016/0016-6480(80)90054-4
- Gonet A.E., Stauffacher W., Pictet R., Renold A.E. Obesity and diabetes mellitus with striking congenital hyperplasia of the islets of langerhans in spiny mice (Acomys Cahirinus): I. Histological findings and preliminary metabolic observations. Diabetologia. 1966.
V. 1(3-4). P. 162–171. DOI: 10.1007/BF01257907 - Teitelman G., Alpert S., Polak J.M. et al. Precursor cells of mouse endocrine pancreas coexpress insulin, glucagon and the neuronal proteins tyrosine hydroxylase and neuropeptide Y, but not pancreatic polypeptide. Development. 1993. V. 118(4). P. 1031–1039. DOI: 10.1242/dev.118.4.1031
- Herrera P.L., Huarte J., Sanvito F. et al. Embryogenesis of the murine endocrine pancreas; early expression of pancreatic polypeptide gene. Development. 1991. V. 113(4). P. 1257–1265. DOI: 10.1242/dev.113.4.1257
- Merkwitz C., Blaschuk O.W., Schulz A. et al. The ductal origin of structural and functional heterogeneity between pancreatic islets. Prog. Histochem. Cytochem. 2013. V. 48(3). P. 103–140. DOI: 10.1016/j.proghi.2013.09.001
- Gustavsen C.R., Kvicerova J., Dickinson H., Heller R.S. Acomys, the closest relatives to Gerbils, do express Pdx-1 protein and have similar islet morphology to Gerbils. Islets. 2009. V. 1(3). P. 191–197. DOI: 10.4161/isl.1.3.9557

