350 rub
Journal Technologies of Living Systems №2 for 2025 г.
Article in number:
Study of the relationship between some psychological and biochemical parameters during ground-based simulation of the initial period of interplanetary flight (experiments “Mars-105” and “Luna-2015”)
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700997-202502-01
UDC: 159.91+612.313.1
Authors:

A.G. Vinokhodova1, I.V. Grigoriev2, G.Yu. Vassilieva3, V.I. Gushin4, P.G. Kuznetsova5, T.A. Smirnova6, A.L. Tserkovsky7, V.V. Lapkovsky8

1,3-6 State Research Center of the Russian Federation – Institute of Medical and Biological Problems of the Russian Academy of Sciences (Moscow, Russia)

2 CIS Executive Committee (Moscow, Russia)

7 Vitebsk State Medical University (Vitebsk, Belarus)

8 Moscow Pedagogical State University (Moscow, Russia)

1 vinokhodova@imbp.ru, 2 ivg21@rambler.ru, 3 galvassilieva@mail.ru, 4 vgushin.57@mail.ru, 5 kuznetsovapg@imbp.ru, 6 smirnova@imbp.ru, 7 tserkovsky.vsmu@gmail.com, 8 lapkovsky223@mail.ru

Abstract:

Autonomy as one of the main psychological factors of interplanetary flight imposes certain limitations on monitoring the psychophysiological state and activities of the cosmonauts. The search for objective and less invasive methods for express-diagnostics of the psycho-physiological state and relationships in the crew, allowing a quickly assess and making decisions about certain preventive measures, is very important for space medicine. The purpose of our study was to conduct a comprehensive analysis of the psychophysiological state and interpersonal relationships of crewmembers in ground-based experiments with isolation, simulating the initial period of interplanetary space flight. An international crew of six male volunteers took part in the Mars-105 experiment, which lasted 105 days: four Russians and two Europeans (representatives of France and Germany) aged from 25 to 40 years. A crew of six Russian women aged 25 to 35 years participated in the 9-day Luna 2015 experiment, simulating a short mission to the Moon.

We used: psychophysiological tests, aimed at assessing the psycho-emotional state, operator performance and stress-tolerance (SAN, RDO, etc.); socio-psychological techniques to assess relationships and group cohesion (sociometric questionnaire and PSPA); biochemical methods (assessment of the protein fractions with different molecular weights in saliva, the concentration of cortisol in saliva).

An increase in the concentration of a protein fraction with a molecular weight near 66 kDa in saliva was significantly (p=0.05) associated with the tension during operator activity and an increased content of cortisol in saliva in participants of the Mars-105 experiment. Higher levels of this indicator were found in subjects with lower sociometric status (“unpopular” crewmembers), who were perceived by other participants as unlike themselves, psychologically distant, and who were not desirable as partners for work in isolation conditions.

In the shorter Luna 2015 experiment, an increase in salivary concentrations of the 55 kDa protein fraction tended to accompany a more positive, relaxed state, although the correlations did not reach the level of significance (p=0.09).

New data have been obtained about the presence of reliable relationships between an objectively measured biochemical parameter - the concentration in mixed human saliva of a protein fraction with a molecular weight near 66 kDa – and some indicators of individual status, which affects popularity in the group. The presented results confirmed the necessity for further research in this area, in order to develop and validate a technology for express-analysis of the psycho-physiological state and group relationships in autonomous conditions.

Pages: 5-16
References
  1. Grigor'ev A.I., Demin E.P., Bystrickaya A.F. i dr. Nekotorye osobennosti organizacii zhiznedeyatel'nosti ekipazha marsianskoj ekspedicii. Aviakosmicheskaya i ekologicheskaya medicina. 2002. T. 36. № 5. S. 3–7. (in Russian).
  2. Kanas N. Behavioral Health and Human Interactions in Space. Springer Nature. Cham. Switzerland. 2023. P. 169-215. https://doi.org/10.1007/978-3-031-16723-2
  3. Larina I.M., Bystrickaya A.F., Smirnova T.M. Psihofiziologicheskij monitoring v usloviyah real'noj i modeliruemoj mikrogravitacii. Fiziologiya cheloveka. 1999. T. 25. №5. S. 86–92. (in Russian).
  4. Bystrickaya A.F., Larina I.M., Laziev S.P., Smirnova T.M. Izuchenie fazovoj struktury processa adaptacii v usloviyah eksperimenta SFINCSS-99. Model'nyj eksperiment s dlitel'noj izolyaciej: problemy i dostizheniya. Pod red. V.M. Baranova. M.: Firma «Slovo». 2001. S. 345–356. (in Russian).
  5. Nichiporuk I.A., Vinokhodova A.G., Vassilieva G.Yu., Eskov K.N. Study of interrelations of a functional intra-group "leader-slave" role and level of stress-resistance with dynamics of neuroendocrine status in the conditions of long-term confinement. 62nd International Astronautical Congress. 2011. IAC 2011. V.1. 2011. P. 38–45.
  6. Nichiporuk I.A., Vasil'eva G.YU., Noskov V.B., Morukov B.V. Dinamika sostava tela, nejrogumoral'nogo i psihofiziologicheskogo statusa cheloveka v usloviyah 105-sutochnoj izolyacii v germoob"ekte. Aviakosmicheskaya i ekologicheskaya medicina. 2011. T. 45. № 2. S. 39–44. (in Russian).
  7. Henze G.I., Konzok J., Kreuzpointner L. et al. Increasing Deactivation of Limbic Structures Over Psychosocial Stress Exposure Time. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging. 2020. V. 5. Is. 7. P. 697–704. https://doi.org/10.1016/j.bpsc.2020.04.002
  8. Brem C., Lutz J., Vollmar C. et al. Changes of brain DTI in healthy human subjects after 520 days isolation and confinement on a simulated mission to Mars. Life Sci. Space Res. (Amst). 2020. V. 24. P. 83–90. https://doi.org/10.1016/j.lssr.2019.09.004
  9. Uhlig M., Reinelt J.D., Lauckner M.E. et al. Rapid volumetric brain changes after acute psychosocial stress. Neuroimage. 2023. V. 265. Article 119760. https://doi.org/10.1016/j.neuroimage.2022.119760
  10. Chrousos G. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 2009. V. 5. P. 374–381. https://doi.org/10.1038/ nrendo.2009
  11. McEwen B.S., Gray J.D., Nasca C. 60 YEARS OF NEUROENDOCRINOLOGY: Redefining neuroendocrinology: stress, sex and cognitive and emotional regulation. J Endocrinol. 2015. V. 226. № 2. P. 67–83. https://doi.org/10.1530/JOE-15-0121
  12. Badiu C. WILLIAMS TEXTBOOK OF ENDOCRINOLOGY. Acta Endocrinol (Buchar). 2019. V. 15. № (3). Article 416. https://doi.org/ 10.4183/aeb.2019.416
  13. Grigor'ev I.V., Lapkovskij V.V., Nichiporuk I.A., Vasil'eva G.YU. Belkovyj spektr slyuny kak indikator psihoemocional'nogo sostoyaniya gruppy (na primere kollektiva ispytatelej pervogo etapa «Mars-500»). Tekhnologii zhivyh sistem. 2011. T.8. № 5. S. 59–65. (in Russian).
  14. Grigor'ev I.V. Slyuna i psihicheskaya sfera cheloveka. M.: Noosfera-3000. 2005. 176 s. (in Russian).
  15. Grigor'ev I.V., Artamonov I.D., Lapkovskij V.V. i dr. Izmenenie belkovogo sostava slyuny pri modelirovanii psihoemocional'nogo napryazheniya. Fiziologiya cheloveka. 2006. T. 32. № 6. S. 87–94. (in Russian).
  16. Tafforin C. Time effects, cultural influences and individual differences in crew behavior during the Mars-500 experiment. Aviat. Space and Environ. Med. 2013. V. 84. P. 1082–1086.
  17. Tafforin C., Kanas N., Giner Abati F., Tamponnet C. Three decades of ethological research in the space field within an interdisciplinary framework. Acta Astronautica. 2023. V. 211. P. 229–237.
  18. Kuznecova P.G., Gushchin V.I., Vinohodova A.G. i dr. Mezhlichnostnoe vzaimodejstvie v usloviyah vysokoj avtonomnosti pri modelirovanii mezhplanetnogo poleta («eksperiment «Mars-500»). Aviakosmicheskaya i ekologicheskaya medicina. 2016. T. 50. № 2. S. 57–63. (in Russian).
  19. Erickson K., Drevets W., Schulkin J. Glucocorticoid regulation of diverse cognitive functions in normal and pathological emotional states. Neurosci. Biobehav. Rev. 2003. V. 27. P. 233–246. https://doi.org/10.1016/s0149-7634(03)00033-2
  20. Boucher P., Plusquellec P. Acute Stress Assessment from Excess Cortisol Secretion: Fundamentals and Perspectives. Front. Endocrinol. (Lausanne). 2019. V. 10. Article 749. https://doi.org/10.3389/fendo.2019.00749
  21. Karelin A.A. Bol'shaya enciklopediya psihologicheskih testov. M.: 2006. S. 242–247. (in Russian).
  22. Smirnova T.M., Bystrickaya A.F., Krut'ko V.N., Morozov V.S. Sistema ocenki psihicheskoj rabotosposobnosti, kak vazhnogo pokazatelya zdorov'ya. Trudy ISA RAN. 2005. T. 13. S. 170–194. (in Russian).
  23. Vinohodova A.G., Bystrickaya A.F., Smirnova T.M. Primenenie metoda ocenki individual'noj stress-ustojchivosti kosmonavtov v celyah professional'nogo otbora specialistov dlya vypolneniya slozhnyh i otvetstvennyh vidov deyatel'nosti. Aviakosmicheskaya i ekologicheskaya medicina. 2007. № 6/1. S. 20–22. (in Russian).
  24. Vinokhodova A., GushinV., Kuznetsova P., Yusupova A. Crew Interaction in Extended Space Missions. Aerospace. 2023. V. 10(8). Article 719. https://doi.org/10.3390/aerospace10080719
  25. Bell R., Bannister D., Fransella F. A Manual for Repertory Grid Technique. John Wiley & Sons: Hoboken, NJ, USA, 2004. P. 288.
  26. Sobchik L.N. Metod cvetovyh vyborov. Modifikaciya vos'micvetovogo testa Lyushera: prakticheskoe rukovodstvo. SPb: Rech'. 2012. 128 s. (in Russian).
  27. McNair D.M., Lorr M., Doppleman L. Edits Manual for the Profile of Mood States (POMS). San Diego. CA. 1992. 40p.
  28. Patrick C.J., Curtin J.J., Tellegen A. Development and validation of a brief form of the Multidimensional Personality Questionnaire. Psychol. Assess. 2002. V. 14(2). P. 150–163.
  29. Saliva Proteome Knowledge Base. http://www.skb.ucla.edu
  30. Esser D., Alvarez-Llamas G., de Vries M.P., et al. Sample Stability and Protein Composition of Saliva: Implications for Its Use as a Diagnostic Fluid. Biomark. Insights. 2008. V. 3. P. 25–27.
  31. Contreras-Aguilar M.D., Vialaret J., Deville de Périère D. et al. Variation of human salivary alpha-amylase proteoforms in three stimulation models. Clin. Oral. Invest. 2020. V. 24. P. 475–486. https://doi.org/10.1007/s00784-019-03021-9
  32. Faustmann T. J., Kamp D., Räuber S. et al. sCD14, a marker of immune-inflammation can help to distinguish between psychotic disorders with and without disordered social interaction. Medical Hypotheses. 2023. V. 181. Article 111190. https://doi.org/10.1016/j.mehy.2023.111190
  33. Tyul'pakov M.A., Nagaeva E.V., Kalinichenko N.YU., Bezlepenkina O.B. Ocenka steroidnogo profilya v slyune u pacientov s vrozhdennoj disfunkciej kory nadpochechnikov. Problemy endokrinologii. 2023. T. 69. № 6. S. 102–108. (in Russian).
  34. Dagli N., Haque M., Kumar S. A Bibliometric Analysis of Clinical Trials on Salivary Biomarkers for Mental Health (2003-2024). Cureus. 2024. V. 16(7). Article e64635. https://doi.org/10.7759/cureus.64635
  35. Larina I.M., Uitson P., Smirnova T.M., Mish CHen YU. Cirkadnye ritmy koncentracii kortizola v slyune vo vremya dlitel'nogo kosmicheskogo polyota. Fiziologiya cheloveka. 2000. № 4. S. 94. (in Russian).
  36. Strewe C., Zeller R., Feuerecker M., et al. PlanHab study: assessment of psycho-neuroendocrine function in male subjects during 21 d of normobaric hypoxia and bed rest. Stress. 2017. V. 20(2). P. 131–139. https://doi.org/10.1080/10253890.2017.1292246
  37. Bell S., Brown S.G., Mitchell T. What we know about team dynamics for longdistance space missions: a systematic review of analog research. Front. Psychol. 2019. V. 10. https://doi.org/10.3389/fpsyg.2019.00811
  38. Palinkas L.A., Suedfeld P. Psychosocial issues in isolated and confined extreme environments. Neuroscience and Biobehavioral Reviews. 2021. V. 126. P. 413–429.
Date of receipt: 03.05.2024
Approved after review: 17.06.2024
Accepted for publication: 22.04.2025