
N.V. Panov1, N.A. Loginova2
1,2 FSBI Institute of Higher Nervous Activity and Neurophysiology, RAS (Moscow, Russia)
1 nikolay.panov1966@yandex.ru, 2 nadezhda.loginova1982@gmail.com
The neurovascular unit is the main structural and functional unit of the brain. Changes in its functioning during cerebral ischemia are an important indicator of the state of the brain as a whole after a stroke. A large number of studies have been aimed at studying the mechanisms of pathological processes.
The purpose of the work is to analyze changes in microcirculation parameters in the neocortex of rats after ischemia caused by photochemical thrombosis.
In the neocortex of rats, a decrease in the main indicators of microcirculation was noted, which were recorded using the laser Doppler flowmetry method, at the source of the stroke in the very first minutes after modeling an ischemic stroke using the photochemical thrombosis method. It was shown that with a general decrease in cerebral blood flow, dysregulation of the active components (endothelial, myogenic and neuronal) occurred to a significant extent.
The information obtained can be used to study possible ways to correct cerebral blood flow in conditions of its decrease caused by vascular thrombosis.
Panov N.V., Loginova N.A. Changes in microcirculation parameters in the neocortex of rats after photochemical thrombosis. Technologies of Living Systems. 2025. V. 22. № 1. Р. 79-86. DOI: https://doi.org/10.18127/j20700997-202501-06 (In Russian).
- Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017. V. 96. P. 17–42.
- Baker W.B., Sun Z., Hiraki T. et al. Neurovascular coupling varies with level of global cerebral ischemia in a rat model. Journal of Cerebral Blood Flow & Metabolism. 2013. V. 33(1). P. 97–105.
- Kaplan L., Chow B.W., Gu C. Neuronal regulation of the blood-brain barrier and neurovascular coupling. Nature Reviews Neuroscience. 2020. V. 21. P. 416–432.
- Heiss W.D. The concept of the penumbra: can it be translated to stroke management? International Journal of Stroke. 2010. V. 5. P. 290–295.
- Krupatkin A.I., Sidorov V.V. Funktsionalnaya diagnostika sostoyaniya mikrotsirkulyatorno-tkanevykh sistem: kolebaniya. informatsiya. nelineyrost (Rukovodstvo dlya vrachey). M.: Knizhnyy dom «LIBROKOM». 2013. 496 s. (in Russian).
- Ravayeva M.Yu., Cheretayev I.V., Chuyan E.N. Deystviye nizkointensivnogo elektromagnitnogo izlucheniya krayne vysokoy chastoty na mikrotsirkulyatorno-metabolicheskiye protsessy v kozhe krys. nakhodyashchikhsya v usloviyakh stressa raznoy prodolzhitelnosti. Tekhnologii zhivykh sistem. 2023. T. 20. № 4. S. 112–120. DOI: https://doi.org/10.18127/j20700997-202304-11
- Ashby J.W., Mack J.J. Endothelial control of cerebral blood flow. The American Journal of Pathology. 2021. V. 191. № 11. P. 1906–1916.
- Peterson E.C., Wang Z., Britz G. Regulation of cerebral blood flow. International Journal of Vascular Medicine. 2011. V. 2011. Article ID 823525.
- Schaeffer S., Iadecola C. Revisiting the neurovascular unit. Nature Neuroscience. 2021. V. 24. P. 1198–1209.
- Gordon G.R.J., Howarth C., MacVicar B.A. Bidirectional control of blood flow by astrocytes: a role for tissue oxygen and other metabolic factors. In: Roach R., Hackett P., Wagner P. (eds) Hypoxia. Advances in Experimental Medicine and Biology. 2016. V. 903. Pringer, Boston, MA
- Kenney K., Amyot F., Haber M. et al. Cerebral vascular injury in traumatic brain injury. Experimental neurology. 2016. V. 275 (3). P. 353–366.
- Jacobs B., Dussor G. Neurovascular contributions to migraine: moving beyond vasodilation. Neuroscience. 2016. V. 338. P. 130–144.
- Cai W., Zhang K., Li P. et al. Dysfunction of the neurovascular unit in ischemic stroke and neurodegenerative diseases: an aging effect. Ageing research reviews. 2017. V. 34. P. 77–87.
- Vogel J., Hermes A., Kuschinsky W. Evolution of microcirculatory disturbances after permanent middle cerebral artery occlusion in rats. Journal of cerebral blood flow and metabolism. 1999. V. 19. P. 1322–1328.
- Pinard E., Nallet H., MacKenzie E.T. et al. Penumbral microcirculatory changes associated with peri-infarct depolarizations in the rat. Stroke. 2002. V. 33. P. 606–612.
- Fisher M., Bastan B. Identifying and utilizing the ischemic penumbra. Neurology. 2012. V. 79 (Suppl. 1). S79–S85.
- Ramos-Cabrer P., Campos F., Sobrino T., Castillo J. Targeting the ischemic penumbra. Stroke. 2011. V. 42. S7–S11.
- Venkat P., Chopp M., Chen J. New insight into coupling and uncoupling of cerebral blood flow and metabolism in the brain. Croat Med. J. 2016. V. 57. P. 223–228.
- Verkhratsky A., Butt A. Glial physiology and pathophysiology. Wiley-Blackwell. 2013. P. 185–195.
- Loginova N.A., Panov N.V., Potekhina (Prokuratova) A.A. et al. Snizheniye trevozhnosti krys posle ishemii golovnogo mozga i uvelicheniye chisla neyronalnykh shchelevykh kontaktov v oblasti penumbry i ochaga insulta pri vvedenii karbenoksolona. Biomeditsinskaya radioelektronika. 2017. № 2. S. 20–27. (in Russian).
- Kralj L., Lenasi H. Wavelet analysis of laser Doppler microcirculatory signals: current applications and limitations. Frontiers in Physiology. 2023. V. 13. Article 1076445. DOI: https://doi.org/10.3389/fphys.2022.1076445
- Bandera E., Botteri M., Minelli C. et al. Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke. Stroke. 2006. V. 37. № 5. P. 1334–1339.
- Manning N.W., Campbell B.C.V., Oxley T.J., Chapot R. Acute ischemic stroke. Time, penumbra, and reperfusion. Stroke. 2014. V. 45. № 2. P. 640–644.
- Vilela P., Rowley H.A. Brain ischemia: CT and MRI techniques in acute ischemic stroke. European journal of radiology. 2017. V. 96. P. 162–172.
- Segal S.S. Regulation of blood flow in the microcirculation. Microcirculation. 2005. V. 12. Is. 1. P. 33–45.
- Ierssel S.V., Conraads V., Craenenbroeck E.V. et al. Endothelial dysfunction in acute brain injury and the development of cerebral ischemia. Crit. Care. 2015. V. 19. Suppl. 1. P. 443. DOI: https://doi.org/10.1186/cc14523
- Shvedova M., Litvak M.M., Roberts Jr. J.D. et al. cGMP-dependent protein kinase I in vascular smooth muscle cells improves ischemic stroke outcome in mice. Journal of cerebral blood flow and metabolism. 2019. V. 39. Is. 12. DOI: https://doi.org/10.1177/0271678X19870583
- Mariana M., Roque C., Baltazar G., Cairrao E. In vitro model for ischemic stroke: functional analysis of vascular smooth muscle cells. Cellular and molecular neurobiology. 2022. V. 42. P. 2289–2304.
- Yagita Y., Kitagawa K., Oyama N. et al. Functional deterioration of endothelial nitric oxide synthase after focal cerebral ischemia. Journal of cerebral blood flow and metabolism. 2013. V. 33. Is. 10. P. 1532–1539.