
L.Kh. Pastushkova1, A.G. Goncharova2, D.N. Kashirina3, A.V. Polyakov4, I.M. Larina5
1–5 State Research Center of the Russian Federation –
Institute of Biomedical Problems of the Russian Academy of Sciences (Moscow, Russia)
1 lpastushkova@mail.ru, 2 goncharova.anna@gmail.com, 3 daryakudryavtseva@mail.ru, 5 irina.larina@gmail.com
Considering the decrease in bone mineral density revealed during long-term space flights (SF), it is important to study the molecular mechanisms regulating the state of bone tissue during SF using proteomics methods.
The goal is to determine proteomic markers included in the molecular networks of compensation for morpho-functional changes in the bone system at different times during long-term SF.
A reliable change in proteins participating in adaptive processes occurring in bone tissue was established on the 7th day, 3rd and 6th months of SF. Bioinformatics methods for analyzing the proteome of dried blood spots showed that 11 proteins are associated with biological processes in the bone system on the 7th day of the flight. On the 3rd month, 13 significantly changing proteins are involved in biological processes, of which 6 proteins were identified only in this time period. On the 6th month, 10 proteins were identified, including two new proteins. It should be noted that at each point of the study, all proteins characteristic of the structural and functional adaptation of the skeletal system were linked into a single molecular network. A brief annotation of the functions and significance of each protein is provided.
The data obtained deepen our understanding of the molecular mechanisms accompanying the processes of bone tissue adaptation under spaceflight conditions, including identifying protein-protein interaction networks. This, in turn, allows us to propose certain proteins as potential targets in the program for developing effective measures to prevent skeletal system disorders during long-term space flights.
Pastushkova L.Kh., Goncharova A.G., Kashirina D.N., Polyakova A.V., Larina I.M. Identification of proteomic markers involved in molecular networks of skeletal disorders during long-duration spaceflight. Technologies of Living Systems. 2025. V. 22. № 1. Р. 5-21. DOI: https://doi.org/10.18127/j20700997-202501-01 (In Russian).
- Levin V.A., Jiang X., Kagan R. Estrogen therapy for osteoporosis in the modern era. Osteoporos Int. 2018. V. 29(5). P. 1049-1055. DOI: 10.1007/s00198-018-4414-z
- Grimm D., Grosse J., Wehland M. et al. The impact of microgravity on bone in humans. Bone. 2016. V. 87. P.44-56. DOI: 10.1016/j.bone.2015.12.057
- Man J., Graham T., Squires-Donelly G., Laslett A.L. The effects of microgravity on bone structure and function// NPJ Microgravity. 2022. V. 8(1). P. 9. DOI: 10.1038/s41526-022-00194-8
- Gao H., Peng X., Li N. et al. Emerging role of liver-bone axis in osteoporosis. J. Orthop. Translat. 2024. V. 48. P. 217-231. DOI: 10.1016/j.jot.2024.07.008
- Lee Satcher R., Fiedler B., Ghali A., Dirschl D.R. Effect of Spaceflight and Microgravity on the Musculoskeletal System: A Review. Am. Acad. Orthop. Surg. 2024. V. 32(12). P. 535-541. DOI: 10.5435/JAAOS-D-23-00954
- Dakkumadugula A., Pankaj L., Alqahtani A.S. et al. Space nutrition and the biochemical changes caused in Astronauts Health due to space flight: A review. Food Chem X. 2023. V. 20. Article 100875. DOI: 10.1016/j.fochx.2023.100875
- Merkur'eva O.N., Babkina I.V., Bulycheva I.V., Prishchep P.L., Romancova O.M., Varfolomeeva S.R., Kushlinskij N.E. Kliniko-laboratornoe znachenie endostatina v syvorotke krovi podrostkov s sarkomami kostej. Tekhnologii zhivyh sistem. 2022. T. 19. № 4. S. 24-32. (in Russian).
- Oganov V.S., Grigor'ev A.I. O mekhanizmah osteopenii i osobennostyah metabolizma kostnoj tkani cheloveka v usloviyah nevesomosti. Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova. 2012. T. 98. № 3. S. 91-105. (in Russian).
- Vico L., Hargens A. Skeletal changes during and after spaceflight. Nat. Rev. Rheumatol. 2018. V. 14(4). P. 229-245. DOI: 10.1038/nrrheum.2018.37
- Smith S.M., Wastney M.E., O'Brien K.O. et al. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the mir space station. J. Bone Miner. Res. 2005. V. 20(2). P. 208-218. DOI: 10.1359/JBMR.041105
- Xu J., Cai X., Miao Z. et al. Proteome-wide profiling reveals dysregulated molecular features and accelerated aging in osteoporosis: A 9.8-year prospective study. Aging Cell. 2024. V. 23(2). Article 14035. DOI: 10.1111/acel.14035
- Pastushkova L.H., Goncharova A.G., Vasil'eva G.YU., Tagirova S.K., Kashirina D.N.,Sajk O.V. i dr. Poisk belkov proteoma krovi-regulyatorov kostnogo remodelirovaniya u kosmonavtov. Fiziologiya cheloveka. 2019. № 5. S. 91-98. (in Russian).
- Kononikhin A.S., Starodubtseva N.L., Brzhozovskiy A.G. et al. Absolute Quantitative Targeted Monitoring of Potential Plasma Protein Biomarkers: A Pilot Study on Healthy Individuals. Biomedicines. 2024. № 12. P. 2403. DOI: 10.3390/biomedicines12102403
- Mori K., Emoto M., Inaba M. Fetuin-A: a multifunctional protein. Recent Pat Endocr. Metab. Immune Drug Discov. 2011. V. 5(2). P. 124-146. DOI: 10.2174/187221411799015372
- Mattinzoli D., Rastaldi M.P., Ikehata M. et al. FGF23-regulated production of Fetuin-A (AHSG) in osteocytes. Bone. 2016. V. 83. P. 35-47. DOI: 10.1016/j.bone.2015.10.008
- Polan C., Brenner C., Herten M. et al. Increased UHMWPE Particle-Induced Osteolysis in Fetuin-A-Deficient Mice. J. Funct. Biomater. 2023. V. 14(1). P. 30. DOI: 10.3390/jfb14010030
- van den Akker G.G.H., Steijns J.S.J.J., Stassen R.H.M.J. et al. Development of a cyclic-inverso AHSG/Fetuin A-based peptide for inhibition of calcification in osteoarthritis. Osteoarthritis Cartilage. 2023. V. 31(6). P. 727-740. DOI: 10.1016/j.joca.2022.11.007
- Muzasti R.A., Suhardjono D., Purwanto B., Juwita Sembiring R. Is there an association between alpha 2-Heremans-Schmid glycoprotein (AHSG) gene Thr256Ser polymorphisms with aortic calcification in regular hemodialysis patients in Medan Indonesia. Med. Glas. (Zenica). 2020. V. 17(1). P. 46-53. DOI: 10.17392/1072-20
- Keskin M., Culha C., Gulcelik N.E. et al. The evaluation of preoperative and postoperative fetuin-A levels in patients with primary hyperparathyroidism. Niger. J. Clin. Pract. 2019. V. 22(3). P. 320-327. DOI: 10.4103/njcp.njcp_323_18
- Duan X., Xing F., Zhang J. et al. Bioinformatic analysis of related immune cell infiltration and key genes in the progression of osteonecrosis of the femoral head. Front. Immunol. 2024. V. 14. Article 1340446. DOI: 10.3389/fimmu.2023.1340446
- Pereira L.C., Nascimento J.C.R., Rêgo J.M.C. et al. Apolipoprotein E, periodontal disease and the risk for atherosclerosis: a review. Arch. Oral. Biol. 2019. V. 98. P. 204-212. DOI: 10.1016/j.archoralbio.2018.11.009
- Souza L.S., Rochette N.F., Pedrosa D.F. et al. Role of APOE Gene in Bone Mineral Density and Incidence of Bone Fractures in Brazilian Postmenopausal Women. J. Clin. Densitom. 2018. V. 21(2). P. 227-235. DOI: 10.1016/j.jocd.2017.03.005
- Xu X., Luo H., Chen Q. et al. Detecting potential mechanism of vitamin D in treating rheumatoid arthritis based on network pharmacology and molecular docking. Front. Pharmacol. 2022. V. 13. Article 1047061. DOI: 10.3389/fphar.2022.1047061
- Li Q., Zhu M., Liu X. et al. Abnormally low serum albumin levels are associated with abnormal bone mineral density and osteoporotic fractures: a retrospective studies. BMC Musculoskelet. Disord. 2024. V. 25(1). P. 888. DOI: 10.1186/s12891-024-08021-9
- Kingston C.D., Santini S., Hauke D., Valderrabano V. Vitamin D and Albumin Deficiency in a Swiss Orthopaedic Surgery In-Patient Cohort. J. Clin. Med. 2024. V. 13(9). P. 2577. DOI: 10.3390/jcm13092577
- Sadowska-Krępa E., Rzetecki A., Zając-Gawlak I. et al. Comparison of selected prooxidant-antioxidant balance and bone metabolism indicators and BDNF levels between older women with different levels of physical activity. BMC Geriatr. 2023. V. 23(1). P. 489. DOI: 10.1186/s12877-023-04205-5
- Baxter R.C. Endocrine and cellular physiology and pathology of the insulin-like growth factor acid-labile subunit. Nat. Rev. Endocrinol. 2024. V. 20(7). P. 414-425. DOI: 10.1038/s41574-024-00970-4
- Yakar S., Bouxsein M.L., Canalis E. et al. The ternary IGF complex influences postnatal bone acquisition and the skeletal response to intermittent parathyroid hormone. J. Endocrinol. 2006. V. 189(2). P. 289-299. DOI: 10.1677/joe.1.06657
- Racine H.L., Serrat M.A. The Actions of IGF-1 in the Growth Plate and Its Role in Postnatal Bone Elongation. Curr. Osteoporos. Rep. 2020. V. 18(3). P. 210-227. DOI: 10.1007/s11914-020-00570-x
- Takhchidi Kh.P., Gavrilova N.A., Gadzhieva N.S., Zinovjeva A.V., Tishchenko O.E. Klinicheskie normy. Oftal’mologiya. M.: GEOTAR-Mediya. 2020. 272 s. (in Russian).
- Duh E.J., Yang H.S., Suzuma I. et al. Pigment epithelium-derived factor suppresses ischemia-induced retinal neovascularization and VEGF-induced migration and growth. Invest. Ophthalmol. Vis. Sci. 2002. V. 43(3). P.821-829.
- Chang X., Zheng Y., Yang Q. et al. Carbonic anhydrase I (CA1) is involved in the process of bone formation and is susceptible to ankylosing spondylitis. Arthritis Res. Ther. 2012. V. 14(4). P. R176. DOI: 10.1186/ar3929
- Chang X., Han J., Zhao Y. et al. Increased expression of carbonic anhydrase I in the synovium of patients with ankylosing spondylitis. BMC Musculoskelet. Disord. 2010. V. 11. P. 279. DOI: 10.1186/1471-2474-11-279
- Feng L., Wang Y., Zhou J. et al. Screening of differentially expressed genes in male idiopathic osteoporosis via RNA sequencing. Mol. Med. Rep. 2018. V. 18(1). P. 67-76. DOI: 10.3892/mmr.2018.8985
- Sadvakassova G., Tiedemann K., Steer K.J.D. et al. Active hematopoiesis triggers exosomal release of PRDX2 that promotes osteoclast formation. Physiol. Rep. 2021. V. 9. Iss. 3. Article e14745. DOI: 10.14814/phy2.14745
- Lee J.Y., Kim D.A., Kim E.Y. et al. Lumican Inhibits Osteoclastogenesis and Bone Resorption by Suppressing Akt Activity. Int. J. Mol. Sci. 2021. V. 22(9). P. 4717. DOI: 10.3390/ijms22094717
- Huang Y., Wang C., Zhou T. et al. Lumican promotes calcific aortic valve disease through H3 histone lactylation. Eur. Heart J. 2024. V. 45(37). P. 3871-3885. DOI: 10.1093/eurheartj/ehae407
- Park S.J., Ji E., Yoo H.J. et al. Circulating lumican as a potential biomarker for osteosarcopenia in older adults. Bone. 2024. V. 179. P. 116959. DOI: 10.1016/j.bone.2023.116959
- Lee Y.S., Park S.J., Lee J.Y. et al. Benefits of lumican on human bone health: clinical evidence using bone marrow aspirates. Korean J. Intern. Med. 2022. V. 37(4). P. 821-829. DOI: 10.3904/kjim.2022.015
- Park J., Jung M.J., Chung W.Y. The downregulation of IGFBP3 by TGF-β signaling in oral cancer contributes to the osteoclast differentiation. Biochem. Biophys. Res. Commun. 2021. V. 534. P. 381-386. DOI: 10.1016/j.bbrc.2020.11.073
- Wang X., Qiu L., Yang Z. et al. Association between serum iron status and the risk of five bone and joint-related diseases: a Mendelian randomization analysis. Front. Endocrinol. (Lausanne). 2024. V. 15. P. 1364375. DOI: 10.3389/fendo.2024.1364375
- Nay K., Koechlin-Ramonatxo C., Rochdi S. et al. Simulated microgravity disturbs iron metabolism and distribution in humans: Lessons from dry immersion, an innovative ground-based human model. FASEB J. 2020. V. 34(11). P. 14920-14929. DOI: 10.1096/fj.202001199RR
- O'Leary T.J., Jackson S., Izard R.M. et al. Iron status is associated with tibial structure and vitamin D metabolites in healthy young men. Bone. 2024. V. 186. P. 117145. DOI: 10.1016/j.bone.2024.117145
- Yanagihara Y., Inoue K., Saeki N. et al. Zscan10 suppresses osteoclast differentiation by regulating expression of Haptoglobin. Bone. 2019. V. 122. P. 93-100. DOI: 10.1016/j.bone.2019.02.011
- Lerner U.H., Fröhlander N. Haptoglobin-stimulated bone resorption in neonatal mouse calvarial bones in vitro. Arthritis Rheum. 1992. V. 35(5). P. 587-591. DOI: 10.1002/art.1780350517
- Mizumoto S., Yamada S. The Specific Role of Dermatan Sulfate as an Instructive Glycosaminoglycan in Tissue Development. Int. J. Mol. Sci. 2022. V. 23(13). P. 7485. DOI: 10.3390/ijms23137485
- Min H.K., Kim S.H., Lee J.Y. et al. DJ-1 controls T cell differentiation and osteoclastogenesis in rheumatoid arthritis. Sci. Rep. 2022. V. 12(1). P. 12767. DOI: 10.1038/s41598-022-16285-1
- Chen J., Ikeda S.I., Yang Y. et al. Scleral remodeling during myopia development in mice eyes: a potential role of thrombospondin-1. Mol. Med. 2024. V. 30(1). P. 25. DOI: 10.1186/s10020-024-00795-x
- Amend S.R., Uluckan O., Hurchla M. et al. Thrombospondin-1 regulates bone homeostasis through effects on bone matrix integrity and nitric oxide signaling in osteoclasts. J. Bone Miner. Res. 2015. V. 30(1). P. 106-115. DOI: 10.1002/jbmr.2308
- Shi D., Liu X., Li X. et al. Yth m6A RNA-Binding Protein 1 Regulates Osteogenesis of MC3T3-E1 Cells under Hypoxia via Translational Control of Thrombospondin-1. Int. J. Mol. Sci. 2023. V. 24(2). P. 1741. DOI: 10.3390/ijms24021741
- Liu Z., Yuan X., Liu M. et al. Antimicrobial Peptide Combined with BMP2-Modified Mesenchymal Stem Cells Promotes Calvarial Repair in an Osteolytic Model. Mol. Ther. 2018. V. 26(1). P. 199-207. DOI: 10.1016/j.ymthe.2017.09.011
- Li X.S., Zhang J.R., Zhao Y.L. et al. Reduced prealbumin is associated with bone mineral density in women with osteoporosis. Nutrition. 2017. V. 33. P. 338-342. DOI: 10.1016/j.nut.2016.08.002
- Nakashima M., Suzuki A., Hashimoto K. et al. Vitronectin regulates osteoclastogenesis and bone remodeling in a mouse model of osteoporosis. Anat. Cell Biol. 2024. V. 57(2). P. 305-315. DOI: 10.5115/acb.23.251