350 rub
Journal Technologies of Living Systems №4 for 2024 г.
Article in number:
Method of microbiological optical-electrochemical testing in application to comparative analysis of biological activity of aqueous plant extracts
Type of article: scientific article
DOI: 10.18127/j20700997-202404-15
Authors:

V.S. Sibirtsev1, I.V. Sementsova2, O.A. Abdillaeva3, V.V. Sherstnev4

1,3,4 Saint Petersburg state chemical and pharmaceutical university (Saint Petersburg, Russia)

1,2 Institute for analytical instrumentation of RAS (Saint Petersburg, Russia)

1 vs1969r@mail.ru, 2 irina.smolko@mail.ru, 3 ojshahon.abdillaeva@spcpu.ru, 4 vladislav.sherstnev@spcpu.ru

Abstract:

Quality control of food, pharmaceutical and other products has become increasingly important in recent years. In turn, one of the important components of the system of such control is microbiological testing of the mentioned products, which is still carried out mainly using time-consuming, labor- and material-intensive visual methods. In this regard, the purpose of this work was to develop an express instrumental method for microbiological testing of food, pharmaceutical and other products suitable for wide practical use, as well as subsequent testing of this method during a comparative analysis with its help of the pro- and antibiotic properties of various plant extracts (often included in the mentioned products as functional additives, in particular, providing the presence of biologically active substances of natural origin in these products).

The developed technique consists of periodic (in our case, every 3 hours) instrumental recording of changes in the efficiency of elastic light scattering, pH and electrical conductivity of a liquid nutrient medium (for which we used a sterile aqueous solution with a pH of 7.2±0.2, containing 20 g/l protein hydrolyzate, 5 g/l glucose, 10 g/l sucrose, 1 g/l NaNO3, 0,5 g/l K2HPO4, 0,3 g/l MgCl2, 0,05g/l MnSO4, 0,1 g/l CaCl2 and 0,1 g/l FeCl3), incubated (in our case at 37ºC) in the presence and absence of viable test microorganisms and test samples.

In order to test the methodology we developed, we used it to perform a comparative analysis of the effect on the dynamics of life activity of Lactobacillus acidophilus (selected by us as a typical representative of the human microbiota) of different concentrations (from 25 to 3 vol.%) of 18 aqueous extracts, prepared in three different ways from 6 different types of plant raw materials used in the food and pharmaceutical industries. It was shown that the nature of the biological activity of the extracts studied was determined not only by the composition of the substances present in them, but also by their concentration (with a decrease in which the antimicrobial activity of the extracts decreased, and the prebiotic activity first increased and then began to decrease), and the method of extraction from the raw materials (at a fixed concentration in the test medium, “cold infusions” had the maximum prebiotic activity, and both “cold infusions” and “hot decoctions” could have the maximum antimicrobial activity), as well as the time of interaction of the mentioned extracts with living organisms ( with an increase in which the biological activity of the extracts decreased).

The studies carried out confirmed that the microbiological testing methodology presented in this work makes it possible to more quickly, objectively and informatively, as well as less labor and material intensively compared to methods previously used for similar purposes, to quality control of samples of both new and already accepted food, pharmaceutical and other products with various herbal additives (as well as individual ingredients included in the mentioned products), including assessment of the pro- and antibiotic properties of the mentioned samples.

Pages: 149-158
References
  1. Sutherland J., Miles M., Hedderley D., Li J., Devoy S., Sutton K., Lauren D. Invitroeffects of food extracts on selected probiotic and pathogenic bacteria. International Journal of Food Sciences and Nutrition. 2009. V. 60. № 8. Р. 717–727. https://doi.org/10.3109/09637480802165650
  2. Das S., Anjeza C., Mandal S. Synergistic or additive antimicrobial activities of Indian spice and herbal extracts against pathogenic, probiotic and food–spoiler micro-organisms. International Food Research Journal. 2012. V. 19. № 3. Р. 1185–1191. http://ifrj.upm.edu.my/volume-19-2012.html
  3. Al-Zubairi A., Al-Mamary M. A., Al-Ghasani E. The antibacterial, antifungal, and antioxidant activities of essential oil from different aromatic plants. Global Advanced Research Journal of Medicine and Medical Sciences. 2017. V. 6. № 9. Р. 224–233. http://garj.org/garjmms
  4. Luzhnova S.A., Tyrkov A.G., Gabitova N.M., Yurtaeva E.A. Synthesis and antimicrobial activity of 5-(arylmethylidene)-2,4,6-pyrimidine-2,4,6(1H,3H,5H)-triones. Pharmaceutical Chemistry Journal. 2018. V. 52. № 6. P. 506–509. https://doi.org/10.1007/s11094-018-1849-7
  5. Koshchienko Yu.V., Drobin Yu.D., Zubenko A.A., Timoshevskii D.A., Fetisov L.N., Bodryakov A.N. Synthesis and antimicrobial, antiprotozoal, and fungistatic activity of [5-(amino-, acylamino-, and 2-pyridylmethylamino)-1-alkylbenzimidazol-2-yl]diphenylmethanols. Pharmaceutical Chemistry Journal. 2018. V. 52. № 8. P. 711–715. https://doi.org/10.1007/s11094-018-1886-2
  6. Begunov R.S., Zaitseva Y.V., Sokolov A.A. et al. Synthesis and antibacterial activity of 1,2,3,4-tetrahydro- and pyrido[1,2-a]benzimidazoles. Pharmaceutical Chemistry Journal. 2022. V. 56. № 1. P. 22–28. https://doi.org/10.1007/s11094-022-02596-0
  7. Anan'eva E.P., Bogdanova O. Yu., Gurina S.V., Sibirtsev V.S. Using a conductometric method in microbiological control of natural excipients. Pharmaceutical Chemistry Journal. 2022. V. 56. № 6. P. 872–876. https://doi.org/10.1007/s11094-022-02721-z
  8. Anan'eva E.P., Bogdanova O. Yu., Gurina S.V., Sibirtsev V.S. Application of impedance technology to the determination of microbial contamination of medicinal plant raw materials. Pharmaceutical Chemistry Journal. 2023. V. 57. № 6. P. 913–917. https://doi.org/ 10.1007/s11094-023-02967-1
  9. Markosyan A.I., Baghdasaryan A.S., Ayvazyan A.S. Synthesis and antibacterial and antitumor properties of derivatives of 5,5-dimethyl-3-iso-propyl-2-thioxo-2,3,5,6-tetrahydrobenzo[h] quinazoline-4(1h)-one. Pharmaceutical Chemistry Journal. 2023. V. 57. № 9.
    P. 1367–1371. https://doi.org/10.1007/s11094-023-02999-7
  10. Shapoval O.G., Sheremetyeva A.S., Dumova N.A. Antimicrobial activity of Thymus serpyllum L. and Thymus marschallianus Willd. essential oils against Candida albicans. Pharmaceutical Chemistry Journal. 2023. V. 57. № 9. P. 1449–1453. https://doi.org/ 10.1007/s11094-023-03009-6
  11. Yamashkin S.A., Stepanenko I.S., Kiryutina A.I., Platkova T.N. Chloroacetates of substituted 1h-indol-5-,6-,7-ylamines and their antimicrobial activity. Pharmaceutical Chemistry Journal. 2023. V. 57. № 10. P. 1546–1551. https://doi.org/10.1007/s11094-024-03047-8
  12. Faskhutdinova E.R., Milent'eva I.S., Loseva A.I., Asyakina L.K., Ostapova E.V. Vliyanie ekstrakta Ginkgo biloba i ego biologicheski aktivnyh veshchestv na nakoplenie lipofuscina v tele Caenorhabditis elegan. Tekhnologii zhivyh sistem. 2023. T. 20. № 4. S. 121–130. https://doi.org/10.18127/j20700997-202304-12 (in Russian).
  13. Sibircev V.S., Garabadzhiu A.V., Ivanov S.D. Mekhanizmy vzaimodejstviya krasitelej fenilbenzimidazol'nogo i fenilindol'nogo ryada s DNK. Bioorganicheskaya himiya. 1994. T. 20. № 6. C. 650–668. (in Russian).
  14. Sibircev V.S., Garabadzhiu A.V., Ivanov S.D. Mekhanizmy izmeneniya fluorescentnyh svojstv bisbenzimidazol'nyh krasitelej. Bioorganicheskaya himiya. 1995. T. 21. № 9. S. 731–736. https://elibrary.ru/item.asp?id=18915687 (in Russian).
  15. Sibirtsev V.S., Glibin E.N., Ivanov S.D. Variation of spectral properties of actinocin derivatives due to equilibrium transformations. Russian Journal of Organic Chemistry. 2000. V. 36. № 12. P. 1812–1818.
  16. Sibircev V.S. Fluorescentnye DNK–zondy: issledovanie mekhanizmov izmeneniya spektral'nyh svojstv i osobennostej prakticheskogo primeneniya. Biohimiya. 2007. T. 72. № 8. S. 1090–1106. https://doi.org/10.1134/S0006297907080111 (in Russian).
  17. Sibirtsev V.S., Garabadzhiu A.V. Spectral study of the interaction of DNA with benzothiazolyl-benz-a-chromene. Biochemistry (Moscow). 2007. V. 72. № 8. P. 901–909. https://doi.org/10.1134/S0006297907080123
  18. Sibircev V.S., Krasnikova L.V., SHlejkin A.G., Stroev S.A., Naumov I.A., Olekhnovich R.O., Tereshchenko V.F., SHabanova E.M., Mussa Al'-Hatib. Novyj metod biotestirovaniya s primeneniem sovremennyh impedansnyh tekhnologij. Nauchno-tekhnicheskij vestnik informacionnyh tekhnologij, mekhaniki i optiki. 2015. T. 15. № 2. S. 275–284. https://doi.org/10.17586/2226-1494-2015-15-2-275-284 (in Russian).
  19. Sibircev V.S., Kulakov A.YU., Stroev S.A. Konduktometricheskoe biotestirovanie v primenenii k ocenke pro- i antibakterial'nyh svojstv katolitov i anolitov. Nauchno-tekhnicheskij vestnik informacionnyh tekhnologij, mekhaniki i optiki. 2016. T. 16. № 3. S. 573–576. https://doi.org/10.17586/2226-1494-2016-16-3-573-576 (in Russian).
  20. Sibirtsev V.S., Olekhnovich R.О., Samuylova E.О. Assessment of integral toxicity of water resources by instrumental methods of analysis. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management (SGEM) Conference Proceedings. 2017. V. 17. № 61. P. 507–514. https://doi.org/10.5593/sgem2017/61/S24.066
  21. Sibirtsev V.S. Investigation of mechanisms of change in spectral properties during interaction of benzazole, indole, and phenanthridium compounds with DNA. Journal of Optical Technology. 2017. V. 84. № 5. P. 294–301. https://doi.org/10.1364/JOT.84.000294
  22. Sibirtsev V.S. Biological test methods based on fluorometric genome analysis. Journal of Optical Technology. 2017. V. 84. № 11. P.787–791. http://doi.org/10.1364/JOT.84.000787
  23. Kokina M.S., Frioui M., Shamtsyan M., Sibirtsev V.S., Krasnikova L.V., Konusova V.G., Simbirtsev A.S. Influence of pleurotus ostreatus beta-glucans on the growth and activity of certain lactic acid bacteria. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry. 2018. V. 19. № 4. Р. 465–471.
  24. Sibircev V.S., Stroev S.A. Optiko-elektrohimicheskaya mikrobiotestovaya sistema ocenki toksicheskoj bezopasnosti nefteproduktov. Nauchno-tekhnicheskij vestnik informacionnyh tekhnologij, mekhaniki i optiki. 2019. T. 19. № 1. S. 74–81. https://doi.org/10.17586/ 2226-1494-2019-19-1-74-81 (in Russian).
  25. Sibircev V.S., Maslova A.YU. Kompleksnoe issledovanie dinamiki zhiznedeyatel'nosti E.coli v prisutstvii ionov perekhodnyh metallov. Nauchno-tekhnicheskij vestnik informacionnyh tekhnologij, mekhaniki i optiki. 2019. T. 19. № 2. S. 236–241. https://doi.org/10.17586/ 2226-1494-2019-19-2-236-241 (in Russian).
  26. Sibirtsev V.S., Uspenskaya M.V., Garabadgiu A.V., Shvets V.I. An integrated method of instrumental microbiotesting of environmental safety of various products, wastes, and territories. Doklady Biological Sciences. 2019. V. 485. № 1. Р. 59–61. https://doi.org/ 10.1134/S001249661902011X
  27. Sibirtsev V.S., Garabadgiu A.V., Shvets V.I. Fluorescent DNA probes: study of properties and methods of application. Doklady Biochemistry and Biophysics. 2019. V. 489. № 5. Р. 403–406. https://doi.org/10.1134/S1607672919060127
  28. Sibirtsev V.S., Garabadgiu A.V., Shvets V.I. New technique for integrated photofluorescence microbiotesting. Doklady Biological Sciences. 2019. V. 489. № 6. Р. 196–199. https://doi.org/10.1134/S0012496619060103
  29. Sibircev V.S., Nechiporenko U.YU. Metodika elektrohimicheskogo biotestirovaniya v primenenii k sravnitel'nomu analizu antimikrobnyh svojstv razlichnyh efirnyh masel. Tekhnologii zhivyh sistem. 2021. T. 18. № 1. S. 58–66. https://doi.org/10.18127/j20700997-202101-06 (in Russian).
  30. Korn G., Korn T. Mathematical Handbook for Scientists and Engineers. Definitions, Theorems and Formulas for Reference and Review. McGraw Hill Book Company. 1968.
  31. Johnson K., Jeffi V. Numerical Methods in Chemistry. New York. Cambridge University Press. 1983.
  32. Sibirtsev V.S. Analysis of benzo[a]pyrene deactivation mechanisms in rats. Biochemistry (Moscow). 2006. V. 71. № 1. P. 90–98. https://doi.org/10.1134/S0006297906010147
Date of receipt: 27.03.2024
Approved after review: 03.04.2024
Accepted for publication: 22.10.2024