L.Kh. Pastushkova1, A.G. Goncharova2, A.M. Nosovsky3, D.N. Kashirina4, I.M. Larina5
1–5 SSC RF – Institute of Biomedical Problems of the Russian Academy of Sciences (Moscow, Russia)
1 lpastushkova@mail.ru, 2 goncharova.anna@gmail.com, 3 collega1952@yandex.ru,
4 daryakudryavtseva@mail.ru, 5 irina.larina@gmail.com
It is relevant to obtain data on the modification of the blood proteome during different periods of long-term space flights (SF) and the recovery period. Also relevant is the transition from descriptive statistics to the topology of movement of networks of protein-protein interactions. Using mass spectrometry methods, samples of dried blood spots from 7 Russian cosmonauts were analyzed as part of the “OMICs-DBS” space experiment. The flight duration of the experiment participants was 170–181 days. Taking into account the huge number of isolated proteins and the variability of their levels throughout the SF, an analysis of protein invariance was carried out using the multidimensional scaling method. The cluster of 18 proteins was identified that made connections between the observed variables (the level of isolated proteins) at all observation points before, during and after SF. Thus, for the first time, an attempt has been made to move from descriptive statistics to the topology of the movement of networks of protein-protein interactions during a long space flight and the recovery period after its completion, which makes it possible to evaluate the effect of exposure to space flight factors at different times.
Pastushkova L.Kh., Goncharova A.G., Nosovsky A.M., Kashirina D.N., Larina I.M. Invariance of proteins – participants in biological processes during long-term space flight. Technologies of Living Systems. 2024. V. 21. № 4. Р. 5-15. DOI: https://doi.org/10.18127/ j20700997-202404-01 (In Russian).
- Berggård T., Linse S., James P. Methods for the detection and analysis of protein-protein interactions. Proteomics. 2007. V. 7(16). P. 2833-2842. DOI: 10.1002/pmic.200700131
- Yanagida M. Functional proteomics; current achievements. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2002. V. 771(1-2). P. 89-106. DOI: 10.1016/s1570-0232(02)00074-0
- Lin J.S., Ali J., Lai E.M. Protein-protein interactions: Co-immunoprecipitation.. Methods Mol. Biol. 2024. V. 2715. P. 273-283. DOI: 10.1007/978-1-0716-3445-5_18
- Nithya C., Kiran M., Nagarajaram H.A. Hubs and bottlenecks in protein-protein interaction networks. Methods Mol. Biol. 2024. V. 2719. P. 227-248. DOI: 10.1007/978-1-0716-3461-5_13
- Klumpe H.E., Garcia-Ojalvo J., Elowitz M.B., Antebi Y.E. The computational capabilities of many-to-many protein interaction networks. Cell Syst. 2023. V. 14(6). P. 430-446. DOI: 10.1016/j.cels.2023.05.001
- Granados A.A., Kanrar N., Elowitz M.B. Combinatorial expression motifs in signaling pathways. Cell Genom. 2024. V. 4(1). P. 100463. DOI: 10.1016/j.xgen.2023.100463
- Antebi Y.E., Nandagopal N., Elowitz M.B. An operational view of intercellular signaling pathways. Curr. Opin. Syst. Biol. 2017. V. 1. P. 16-24. DOI: 10.1016/j.coisb.2016.12.003
- Li P., Elowitz M.B. Communication codes in developmental signaling pathways. Development. 2019. V. 146(12). P. dev170977. DOI: 10.1242/dev.170977
- Massagué J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 2012. V. 13(10). P. 616-630. DOI: 10.1038/nrm3434
- Verkaar F., Zaman G.J. A model for signaling specificity of Wnt/Frizzled combinations through co-receptor recruitment. FEBS Lett. 2010. V. 584(18). P. 3850-3854. DOI: 10.1016/j.febslet.2010.08.030
- Okigawa S., Mizoguchi T., Okano M., Tanaka H., Isoda M., Jiang Y.J., Suster M., Higashijima S., Kawakami K., Itoh M. Different combinations of Notch ligands and receptors regulate V2 interneuron progenitor proliferation and V2a/V2b cell fate determination. Dev. Biol. 2014. V. 391(2). P. 196-206. DOI: 10.1016/j.ydbio.2014.04.011
- Rohani N., Parmeggiani A., Winklbauer R., Fagotto F. Variable combinations of specific ephrin ligand/Eph receptor pairs control embryonic tissue separation. PLoS Biol. 2014. V. 12(9). P. e1001955. DOI: 10.1371/journal.pbio.1001955
- Wang Y., Chang H., Rattner A., Nathans J. Frizzled receptors in development and disease. Curr. Top Dev. Biol. 2016. V. 117. P. 113-139. DOI: 10.1016/bs.ctdb.2015.11.028
- Derynck R., Budi E.H. Specificity, versatility, and control of TGF-β family signaling. Sci. Signal. 2019. V. 12(570). P. eaav5183. DOI: 10.1126/scisignal.aav5183
- Gaither C., Popp R., Mohammed Y., Borchers C.H. Determination of the concentration range for 267 proteins from 21 lots of commercial human plasma using highly multiplexed multiple reaction monitoring mass spectrometry. Analyst. 2020. V. 145(10). P. 3634-3644. DOI: 10.1039/c9an01893j
- Afifi A., Ejzen S. Statisticheskij analiz: Podhod s ispol'zovaniem EVM. M.: Mir. 1982. 488 s. (in Russian).
- Borovikov V.P., Borovikov I.P. STATISTICA – Statisticheskij analiz i obrabotka dannyh v srede Windows. M.: Filin". 1997. 608 s. (in Russian).
- Westerterp M., Berbée J.F., Delsing D.J., Jong M.C., Gijbels M.J., Dahlmans V.E., Offerman E.H., Romijn J.A., Havekes L.M., Rensen P.C. Apolipoprotein C-I binds free fatty acids and reduces their intracellular esterification. J. Lipid Res. 2007. V. 48(6). P. 1353-1361. DOI: 10.1194/jlr.M700024-JLR200
- Wang Z., Ji C., Han Q., Wang Z., Huang Y. Data-independent acquisition-based serum proteomic profiling of adult moyamoya disease patients reveals the potential pathogenesis of vascular changes. J. Mol. Neurosci. 2022. V. 72(12). P. 2473-2485. DOI: 10.1007/s12031-022-02092-w
- Yu K., Li S., Wang C., Zhang Y., Li L., Fan X., Fang L., Li H., Yang H., Sun J., Yang X. APOC1 as a novel diagnostic biomarker for DN based on machine learning algorithms and experiment. Front. Endocrinol (Lausanne). 2023. V. 14. P. 1102634. DOI: 10.3389/fendo.2023.1102634
- Wolska A., Dunbar R.L., Freeman L.A., Ueda M., Amar M.J., Sviridov D.O., Remaley A.T. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis. 2017. V. 267. P. 49-60. DOI: 10.1016/j.atherosclerosis.2017.10.025
- Kei A.A., Filippatos T.D., Tsimihodimos V., Elisaf M.S. A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease. Metabolism. 2012. V. 61(7). P. 906-921. DOI: 10.1016/j.metabol.2011.12.002
- Anand R., Sarmah D.T., Chatterjee S. Extracting proteins involved in disease progression using temporally connected networks. BMC Syst. Biol. 2018. V. 12(1). P. 78. DOI: 10.1186/s12918-018-0600-z
- Sarmah D.T., Bairagi N., Chatterjee S. Tracing the footsteps of autophagy in computational biology. Brief Bioinform. 2021. V. 22(4). P. bbaa286. DOI: 10.1093/bib/bbaa286
- Pastushkova L.H., Goncharov I.A., Kashirina D.N., Goncharova A.G., Larina I.M. Svyaz' ryada dostoverno izmenyayushchihsya belkov krovi s angiogenezom posle 21-sutochnoj immersii. Tekhnologii zhivyh sistem. 2021. T. 18. № 1. S. 51–57. (in Russian).