350 rub
Journal Technologies of Living Systems №4 for 2024 г.
Article in number:
Invariance of proteins – participants in biological processes during long-term space flight
Type of article: scientific article
DOI: 10.18127/j20700997-202404-01
UDC: 577.29
Authors:

L.Kh. Pastushkova1, A.G. Goncharova2, A.M. Nosovsky3, D.N. Kashirina4, I.M. Larina5

1–5 SSC RF – Institute of Biomedical Problems of the Russian Academy of Sciences (Moscow, Russia)

1 lpastushkova@mail.ru, 2 goncharova.anna@gmail.com, 3 collega1952@yandex.ru,
4 daryakudryavtseva@mail.ru, 5 irina.larina@gmail.com

Abstract:

It is relevant to obtain data on the modification of the blood proteome during different periods of long-term space flights (SF) and the recovery period. Also relevant is the transition from descriptive statistics to the topology of movement of networks of protein-protein interactions. Using mass spectrometry methods, samples of dried blood spots from 7 Russian cosmonauts were analyzed as part of the “OMICs-DBS” space experiment. The flight duration of the experiment participants was 170–181 days. Taking into account the huge number of isolated proteins and the variability of their levels throughout the SF, an analysis of protein invariance was carried out using the multidimensional scaling method. The cluster of 18 proteins was identified that made connections between the observed variables (the level of isolated proteins) at all observation points before, during and after SF. Thus, for the first time, an attempt has been made to move from descriptive statistics to the topology of the movement of networks of protein-protein interactions during a long space flight and the recovery period after its completion, which makes it possible to evaluate the effect of exposure to space flight factors at different times.

Pages: 5-15
For citation

Pastushkova L.Kh., Goncharova A.G., Nosovsky A.M., Kashirina D.N., Larina I.M. Invariance of proteins – participants in biological processes during long-term space flight. Technologies of Living Systems. 2024. V. 21. № 4. Р. 5-15. DOI: https://doi.org/10.18127/ j20700997-202404-01 (In Russian).

References
  1. Berggård T., Linse S., James P. Methods for the detection and analysis of protein-protein interactions. Proteomics. 2007. V. 7(16). P. 2833-2842. DOI: 10.1002/pmic.200700131
  2. Yanagida M. Functional proteomics; current achievements. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci. 2002. V. 771(1-2). P. 89-106. DOI: 10.1016/s1570-0232(02)00074-0
  3. Lin J.S., Ali J., Lai E.M. Protein-protein interactions: Co-immunoprecipitation.. Methods Mol. Biol. 2024. V. 2715. P. 273-283. DOI: 10.1007/978-1-0716-3445-5_18
  4. Nithya C., Kiran M., Nagarajaram H.A. Hubs and bottlenecks in protein-protein interaction networks. Methods Mol. Biol. 2024. V. 2719. P. 227-248. DOI: 10.1007/978-1-0716-3461-5_13
  5. Klumpe H.E., Garcia-Ojalvo J., Elowitz M.B., Antebi Y.E. The computational capabilities of many-to-many protein interaction networks. Cell Syst. 2023. V. 14(6). P. 430-446. DOI: 10.1016/j.cels.2023.05.001
  6. Granados A.A., Kanrar N., Elowitz M.B. Combinatorial expression motifs in signaling pathways. Cell Genom. 2024. V. 4(1). P. 100463. DOI: 10.1016/j.xgen.2023.100463
  7. Antebi Y.E., Nandagopal N., Elowitz M.B. An operational view of intercellular signaling pathways. Curr. Opin. Syst. Biol. 2017. V. 1. P. 16-24. DOI: 10.1016/j.coisb.2016.12.003
  8. Li P., Elowitz M.B. Communication codes in developmental signaling pathways. Development. 2019. V. 146(12). P. dev170977. DOI: 10.1242/dev.170977
  9. Massagué J. TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 2012. V. 13(10). P. 616-630. DOI: 10.1038/nrm3434
  10. Verkaar F., Zaman G.J. A model for signaling specificity of Wnt/Frizzled combinations through co-receptor recruitment. FEBS Lett. 2010. V. 584(18). P. 3850-3854. DOI: 10.1016/j.febslet.2010.08.030
  11. Okigawa S., Mizoguchi T., Okano M., Tanaka H., Isoda M., Jiang Y.J., Suster M., Higashijima S., Kawakami K., Itoh M. Different combinations of Notch ligands and receptors regulate V2 interneuron progenitor proliferation and V2a/V2b cell fate determination. Dev. Biol. 2014. V. 391(2). P. 196-206. DOI: 10.1016/j.ydbio.2014.04.011
  12. Rohani N., Parmeggiani A., Winklbauer R., Fagotto F. Variable combinations of specific ephrin ligand/Eph receptor pairs control embryonic tissue separation. PLoS Biol. 2014. V. 12(9). P. e1001955. DOI: 10.1371/journal.pbio.1001955
  13. Wang Y., Chang H., Rattner A., Nathans J. Frizzled receptors in development and disease. Curr. Top Dev. Biol. 2016. V. 117. P. 113-139. DOI: 10.1016/bs.ctdb.2015.11.028
  14. Derynck R., Budi E.H. Specificity, versatility, and control of TGF-β family signaling. Sci. Signal. 2019. V. 12(570). P. eaav5183. DOI: 10.1126/scisignal.aav5183
  15. Gaither C., Popp R., Mohammed Y., Borchers C.H. Determination of the concentration range for 267 proteins from 21 lots of commercial human plasma using highly multiplexed multiple reaction monitoring mass spectrometry. Analyst. 2020. V. 145(10). P. 3634-3644. DOI: 10.1039/c9an01893j
  16. Afifi A., Ejzen S. Statisticheskij analiz: Podhod s ispol'zovaniem EVM. M.: Mir. 1982. 488 s. (in Russian).
  17. Borovikov V.P., Borovikov I.P. STATISTICA – Statisticheskij analiz i obrabotka dannyh v srede Windows. M.: Filin". 1997. 608 s. (in Russian).
  18. Westerterp M., Berbée J.F., Delsing D.J., Jong M.C., Gijbels M.J., Dahlmans V.E., Offerman E.H., Romijn J.A., Havekes L.M., Rensen P.C. Apolipoprotein C-I binds free fatty acids and reduces their intracellular esterification. J. Lipid Res. 2007. V. 48(6). P. 1353-1361. DOI: 10.1194/jlr.M700024-JLR200
  19. Wang Z., Ji C., Han Q., Wang Z., Huang Y. Data-independent acquisition-based serum proteomic profiling of adult moyamoya disease patients reveals the potential pathogenesis of vascular changes. J. Mol. Neurosci. 2022. V. 72(12). P. 2473-2485. DOI: 10.1007/s12031-022-02092-w
  20. Yu K., Li S., Wang C., Zhang Y., Li L., Fan X., Fang L., Li H., Yang H., Sun J., Yang X. APOC1 as a novel diagnostic biomarker for DN based on machine learning algorithms and experiment. Front. Endocrinol (Lausanne). 2023. V. 14. P. 1102634. DOI: 10.3389/fendo.2023.1102634
  21. Wolska A., Dunbar R.L., Freeman L.A., Ueda M., Amar M.J., Sviridov D.O., Remaley A.T. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis. 2017. V. 267. P. 49-60. DOI: 10.1016/j.atherosclerosis.2017.10.025
  22. Kei A.A., Filippatos T.D., Tsimihodimos V., Elisaf M.S. A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease. Metabolism. 2012. V. 61(7). P. 906-921. DOI: 10.1016/j.metabol.2011.12.002
  23. Anand R., Sarmah D.T., Chatterjee S. Extracting proteins involved in disease progression using temporally connected networks. BMC Syst. Biol. 2018. V. 12(1). P. 78. DOI: 10.1186/s12918-018-0600-z
  24. Sarmah D.T., Bairagi N., Chatterjee S. Tracing the footsteps of autophagy in computational biology. Brief Bioinform. 2021. V. 22(4). P. bbaa286. DOI: 10.1093/bib/bbaa286
  25. Pastushkova L.H., Goncharov I.A., Kashirina D.N., Goncharova A.G., Larina I.M. Svyaz' ryada dostoverno izmenyayushchihsya belkov krovi s angiogenezom posle 21-sutochnoj immersii. Tekhnologii zhivyh sistem. 2021. T. 18. № 1. S. 51–57. (in Russian).
Date of receipt: 17.06.2024
Approved after review: 27.06.2024
Accepted for publication: 22.10.2024