P.A. Podlesnaya1, O.V. Kovaleva2, O.S. Malashenko3, A.N. Gratchev4, I.S. Chernomaz5, P.L. Prishchep6, M.L. Filipenko7, N.E. Kushlinskii8
1–6,8 Federal State Budgetary Institution «N.N. Blokhin National Medical Research Center of Oncology»
of the Ministry of Health of Russia (Moscow, Russia)
7 Federal State Budgetary Institution of Science Institute of Chemical Biology and Fundamental Medicine
of the Siberian Branch of the Russian Academy of Sciences (Novosibirsk, Russia)
1 polina.pod@yandex.ru, 2 ovkovaleva@gmail.com, 3 o.malashenko@ronc.ru, 4 alexei.gratchev@gmail.com, 5 Paulig92@mail.ru, 6 marvel2602@mail.ru, 7 mlfilipenko@gmail.com, 8 kne3108@gmail.com
Immunotherapy is a highly efficient treatment strategy for many solid tumors; however, its application in some types of malignant neoplasms is limited due to the lack of optimal targets. Tumor antigens that can be recognized by cytotoxic cells of the immune system are promising targets for the development of new pharmaceuticals. Currently, the investigation of antigenic differences between malignant and normal cells remains a crucial issue that opens up an understanding of the mechanisms of carcinogenesis and its regulatory pathways.
The purpose of this work is to summarize contemporary research dedicated to new tumor-specific and tumor-associated antigens in various oncological diseases and the prospects for their use as targets for immunotherapy.
This paper presents data on the classification, structure, and functions of tumor antigens, particularly SAGE1, XAGE2, and MAGE I, their role in the immune response, tumor progression, and anti-tumor therapy. The diverse functions of these proteins, both under normal conditions and in the development and progression of various tumors, are discussed.
The development of new methods of immunotherapy, namely therapeutic tumor vaccines, is rapidly advancing today. Tumor-associated antigens, due to their limited expression in tumor cells and high immunogenicity, are a promising tool for the development of minimally invasive diagnostic methods and targeted treatment of malignant tumors, showing encouraging results in preclinical and early clinical trials.
Podlesnaya P.A., Kovaleva O.V., Malashenko O.S., Gratchev A.N., Chernomaz I.S., Prishchep P.L., Filipenko M.L., Kushlinskii N.E. Tumor-specific and tumor-associated antigens as targets for immunotherapy. Technologies of Living Systems. 2024. V. 21. № 3. Р. 53-66. DOI: https://doi.org/10.18127/j20700997-202403-06 (In Russian).
- Tyuryayeva I.I. Opukholevyye antigeny. Tsitologiya. 2008. T. 50. № 3. S. 189-209. (in Russian).
- Mikhaylova I.N., Kovalevskiy D.A., Bibilashvili R.Sh. Rakovo-testikularnyye antigeny kak potentsialnyye misheni dlya vaktsinoterapii opukholey. Rossiyskiy bioterapevticheskiy zhurnal. 2010. T. 4 (9). S. 17-26. (in Russian).
- Jassim A., Ollier W., Payne A. et al. Analysis of HLA antigens on germ cells in human semen. Eur. J. Imunol. 1989. V. 19 (7). P. 1215-1220.
- Akers S.N., Odunsi K., Karpf A.R. Regulation of cancer germline antigen gene expression. P. implications for cancer immunotherapy. Future Oncol. 2010. V. 6 (5). P. 717-732.
- Nin D.S., Deng L.W. Biology of Cancer-Testis Antigens and Their Therapeutic Implications in Cancer. Cells. 2023. V. 12 (6). P. 926.
- Martelange V., De Smet C., De Plaen E., Lurquin C., Boon T. Identification on a human sarcoma of two new genes with tumor-specific expression. Cancer Res. 2000. V. 60 (14). P. 3848-3855.
- Zhang Y., Yu X., Liu Q. et al. SAGE1. P. a Potential Target Antigen for Lung Cancer T-Cell Immunotherapy. Mol. Cancer Ther. 2021. V. 20 (11). P. 2302-2313.
- Maheswaran E., Pedersen C.B., Ditzel H.J., Gjerstorff M.F. Lack of ADAM2, CALR3 and SAGE1 Cancer/Testis Antigen Expression in Lung and Breast Cancer. PloS one. 2015. V. 10 (8). P. e0134967.
- Ishihara M., Kageyama S., Miyahara Y. et al. MAGE-A4, NY-ESO-1 and SAGE mRNA expression rates and co-expression relationships in solid tumours. BMC cancer. 2020. V. 20 (1). P. 606.
- Miyahara Y., Naota H., Wang L. et al. Determination of cellularly processed HLA-A2402-restricted novel CTL epitopes derived from two cancer germ line genes, MAGE-A4 and SAGE. Clin. Cancer Res. 2005. V. 11 (15). P. 5581-5589.
- Patent RU2725799C2 Onkoliticheskiye adenovirusy. kodiruyushchiye bispetsificheskiye antitela. a takzhe sposoby i primeneniya. svyazannyye s nimi. A. Khemminki. S. Parviaynen. S. Tyakhtinen. Rossiyskaya Federatsiya. 2016. (in Russian).
- Brinkmann U., Vasmatzis G., Lee B., Pastan I. Novel genes in the PAGE and GAGE family of tumor antigens found by homology walking in the dbEST database. Cancer Res. 1999. V. 59 (7). P. 1445-1448.
- Zendman A.J., Van Kraats A.A., Weidle U.H. et al. The XAGE family of cancer/testis-associated genes. P. alignment and expression profile in normal tissues, melanoma lesions and Ewing's sarcoma. Int. J. Cancer. 2002. V. 99 (3). P. 361-369.
- Yamada R., Takahashi A., Torigoe T. et al. Preferential expression of cancer/testis genes in cancer stem-like cells. P. proposal of a novel sub-category, cancer/testis/stem gene. Tissue antigens. 2013. V. 81 (6). P. 428-434.
- Patent RU2758007C2 Dostavka terapevticheskikh polipeptidov posredstvom psevdotipirovannykh onkoliticheskikh virusov L. Ivnin. M.Kh. Finer. Rossiyskaya Federatsiya. 2021. (in Russian).
- Patent RU2689553C2 Lecheniye raka golovnogo mozga onkoliticheskim adenovirusom. Kh. Fueyo. K. Mansano-Gomes. F. Leng. Rossiyskaya Federatsiya. 2019. (in Russian).
- Shchegoleva A.A., Isayeva A.V., Lyapunova L.S. Molekulyarnyye markery progressii i ingibirovaniya predopukholevykh izmeneniy bronkhialnogo epiteliya. Materialy XV Mezhdunarodnoy konferentsii studentov. aspirantov i molodykh uchenykh. 2018. Tomsk. (in Russian).
- Chen C.H., Chen Y.C., Huang C.H. et al. Exploring Potential Proteomic Biomarkers for Prognosis of Infective Endocarditis through Profiled Autoantibodies by an Immunomics Protein Array Technique. Heart Surg. Forum. 2020. V. 23 (5). P. E555-E573.
- Liu S., Zhao Y., Xu Y. et al. The clinical significance of methylation of MAGE-A1 and-A3 promoters and expression of DNA methyltransferase in patients with laryngeal squamous cell carcinoma. Am. J. Otolaryngol. 2020. V. 41 (1). P. 102318.
- Chomez P., De Backer O., Bertrand M. et al. An overview of the MAGE gene family with the identification of all human members of the family. Cancer Res. 2001. V. 61 (14). P. 5544-5551.
- Old L.J. Cancer immunology. P. the search for specificity--G. H. A. Clowes Memorial lecture. Cancer Res. 1981. V. 41 (2). P. 361-375.
- Wolfel T., Van Pel A., De Plaen E. et al. Immunogenic (tum-) variants obtained by mutagenesis of mouse mastocytoma P815. VIII. Detection of stable transfectants expressing a tum- antigen with a cytolytic T cell stimulation assay. Immunogenetics. 1987. V. 26 (3). P. 178-187.
- van der Bruggen P., Traversari C., Chomez P., Lurquin C., De Plaen E., Van den Eynde B., Knuth A., Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991. V. 254 (5038). P. 1643-1647.
- Van den Eynde B., Peeters O., De Backer O. et al. A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma. J. Exp. Med. 1995. V. 182 (3). P. 689-698.
- Florke Gee R.R., Chen H., Lee A.K. et al. Emerging roles of the MAGE protein family in stress response pathways. J. Biol. Chem. 2020. V. 295 (47). P. 16121-16155.
- Doyle J.M., Gao J., Wang J. et al. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell. 2010. V. 39 (6). P. 963-974.
- Xiao T.Z., Bhatia N., Urrutia R. et al. MAGE I transcription factors regulate KAP1 and KRAB domain zinc finger transcription factor mediated gene repression. PloS one. 2011. V. 6 (8). P. e23747.
- Kozakova L., Vondrova L., Stejskal K. et al. The melanoma-associated antigen 1 (MAGEA1) protein stimulates the E3 ubiquitin-ligase activity of TRIM31 within a TRIM31-MAGEA1-NSE4 complex. Cell Cycle. 2015. V. 14 (6). P. 920-930.
- Fon Tacer K., Montoya M.C., Oatley M.J. et al. MAGE cancer-testis antigens protect the mammalian germline under environmental stress. Sci Adv. 2019. V. 5 (5). P. eaav4832.
- De Plaen E., Arden K., Traversari C. et al. et al. Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics. 1994. V. 40 (5). P. 360-369.
- Takahashi K., Shichijo S., Noguchi M. et al. Identification of MAGE-1 and MAGE-4 proteins in spermatogonia and primary spermatocytes of testis. Cancer Res. 1995. V. 55 (16). P. 3478-3482.
- Hou S., Xian L., Shi P. et al. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice. Sci. Rep. 2016. V. 6. P. 26735.
- Gordeyeva O.F. Ekspressiya rakovo-testikulyarnykh antigenov semeystv magea i mageb v embrionalnykh fibroblastakh myshi pri kultivirovanii in vitro. Ontogenez. 2015. V. 46 (3). P. 186-197. (in Russian).
- Gu L., Sang M., Yin D. et al. MAGE-A gene expression in peripheral blood serves as a poor prognostic marker for patients with lung cancer. Thorac. Cancer. 2018. V. 9 (4). P. 431-438.
- Serrano A., Lethe B., Delroisse J.M. et al. Quantitative evaluation of the expression of MAGE genes in tumors by limiting dilution of cDNA libraries. Int. J. Cancer. 1999. V. 83 (5). P. 664-669.
- Chaux P., Vantomme V., Coulie P. et al. Estimation of the frequencies of anti-MAGE-3 cytolytic T-lymphocyte precursors in blood from individuals without cancer. Int. J. Cancer. 1998. V. 77 (4). P. 538-542.
- Godelaine D., Carrasco J., Lucas S. et al. Polyclonal CTL responses observed in melanoma patients vaccinated with dendritic cells pulsed with a MAGE-3.A1 peptide. J. Immunol. 2003. V. 171 (9). P. 4893-4897.
- Valmori D., Lienard D., Waanders G. et al. Analysis of MAGE-3-specific cytolytic T lymphocytes in human leukocyte antigen-A2 melanoma patients. Cancer Res. 1997. V. 57 (4). P. 735-741.
- Bar-Haim E., Paz A., Machlenkin A. et al. MAGE-A8 overexpression in transitional cell carcinoma of the bladder. P. identification of two tumour-associated antigen peptides. Br. J. Cancer. 2004. V. 91 (2). P. 398-407.
- Lisica Sikic N., Petric Mise B., Tomic S. et al. MAGE-A10 Protein Expression in Advanced High Grade Serous Ovarian Cancer Is Associated with Resistance to First-Line Platinum-Based Chemotherapy. Cancers (Basel). 2023. V. 15 (19). P. 4695.
- Lucas S., De Plaen E., Boon T. MAGE-B5, MAGE-B6, MAGE-C2, and MAGE-C3. P. four new members of the MAGE family with tumor-specific expression. Int. J. Cancer. 2000. V. 87 (1). P. 55-60.
- Achinko D.A., Dormer A., Narayanan M., Norman E.F. Targeted immune epitope prediction to HHLA2 and MAGEB5 protein variants as therapeutic approach to related viral diseases. BMC Immunol. 2021. V. 22 (1). P. 49.
- Juhari W.K.W., Ahmad Amin Noordin K.B., Zakaria A.D. et al. Whole-Genome Profiles of Malay Colorectal Cancer Patients with Intact MMR Proteins. Genes (Basel). 2021. V. 12 (9). P. 1448.
- Zaragoza-Huesca D., Garrido-Rodriguez P., Jimenez-Fonseca P. et al. Identification of Thrombosis-Related Genes in Patients with Advanced Gastric Cancer. P. Data from AGAMENON-SEOM Registry. Biomedicines. 2022. V. 10 (1). P. 148.
- Kulkarni P., Shiraishi T., Rajagopalan K. et al. Cancer/testis antigens and urological malignancies. Nat. Rev. Urol. 2012. V. 9 (7). P. 386-396.
- Gaspar J.A., Srinivasan S.P., Sureshkumar P. et al. Depletion of Mageb16 induces differentiation of pluripotent stem cells predominantly into mesodermal derivatives. Sci. Rep. 2017. V. 7 (1). P. 14285.
- Gaspar J.A., Doss M.X., Winkler J. et al. Gene expression signatures defining fundamental biological processes in pluripotent, early, and late differentiated embryonic stem cells. Stem Cell. Dev. 2012. V. 21 (13). P. 2471-2484.
- Liu Y., Wang M., Jiang S. et al. Demethylation of CpG islands in the 5' upstream regions mediates the expression of the human testis-specific gene MAGEB16 and its mouse homolog Mageb16. BMB Rep. 2014. V. 47 (2). P. 86-91.
- Shuid A.N., Safi N., Haghani A. et al. Apoptosis transcriptional mechanism of feline infectious peritonitis virus infected cells. Apoptosis. 2015. V. 20 (11). P. 1457-1470.
- Liu M., Li M., Liu J. et al. Elevated urinary urea by high-protein diet could be one of the inducements of bladder disorders. J. Transl. Med. 2016. V. 14. P. 53.
- Chakravarthi V.P., Ratri A., Masumi S. et al. Granulosa cell genes that regulate ovarian follicle development beyond the antral stage: The role of estrogen receptor beta. Mol. Cell. Endocrinol. 2021. V. 528. P. 111212.
- Wang H., Avillach P. Diagnostic Classification and Prognostic Prediction Using Common Genetic Variants in Autism Spectrum Disorder. P. Genotype-Based Deep Learning. JMIR Med. Inform. 2021. V. 9 (4). P. e24754.
- Monaco G., Lee B., Xu W. et al. RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types. Cell Rep. 2019. V. 26 (6). P. 1627-1640 e7.
- Yamada A., Kataoka A., Shichijo S. et al. Expression of MAGE-1, MAGE-2, MAGE-3/-6 and MAGE-4a/-4b genes in ovarian tumors. Int. J. Cancer. 1995. V. 64 (6). P. 388-393.
- Kawagoe H., Yamada A., Matsumoto H. et al. Serum MAGE-4 protein in ovarian cancer patients. Gynecol. Oncol. 2000. V. 76 (3). P. 336-339.
- Szajnik M., Derbis M., Lach M. et al. Exosomes in Plasma of Patients with Ovarian Carcinoma. P. Potential Biomarkers of Tumor Progression and Response to Therapy. Gynecol. Obstet. (Sunnyvale). 2013. V. Suppl 4. P. 3.
- Hofmann M., Ruschenburg I. mRNA detection of tumor-rejection genes BAGE, GAGE, and MAGE in peritoneal fluid from patients with ovarian carcinoma as a potential diagnostic tool. Cancer. 2002. V. 96 (3). P. 187-193.
- Xu Y., Wang C., Zhang Y. et al. Overexpression of MAGE-A9 Is Predictive of Poor Prognosis in Epithelial Ovarian Cancer. Sci. Rep. 2015. V. 5. P. 12104.
- Zhang S., Zhou X., Yu H., Yu Y. Expression of tumor-specific antigen MAGE, GAGE and BAGE in ovarian cancer tissues and cell lines. BMC Cancer. 2010. V. 10. P. 163.
- Yakirevich E., Sabo E., Lavie O. et al. Expression of the MAGE-A4 and NY-ESO-1 cancer-testis antigens in serous ovarian neoplasms. Clin. Cancer Res. 2003. V. 9 (17). P. 6453-6460.
- Sang M., Wu X., Fan X. et al. Multiple MAGE-A genes as surveillance marker for the detection of circulating tumor cells in patients with ovarian cancer. Biomarkers. 2014. V. 19 (1). P. 34-42.
- Dakshinamurthy A.G., Ramesar R., Goldberg P., Blackburn J.M. Infrequent and low expression of cancer-testis antigens located on the X chromosome in colorectal cancer. P. implications for immunotherapy in South African populations. Biotechnol. J. 2008. V. 3 (11). P. 1417-1423.
- Chung F.Y., Cheng T.L., Chang H.J. et al. Differential gene expression profile of MAGE family in taiwanese patients with colorectal cancer. J. Surg. Oncol. 2010. V. 102 (2). P. 148-153.
- Zhan W., Zhang Z., Zhang Y. et al. Prognostic value of MAGE-A9 expression in patients with colorectal cancer. Clin. Res. Hepatol. Gastroenterol. 2016. V. 40 (2). P. 239-245.
- Ai H., Yang H., Li L. et al. Cancer/testis antigens. P. promising immunotherapy targets for digestive tract cancers. Front. Immunol. 2023. V. 14. P. 1190883.
- Lin M.J., Svensson-Arvelund J., Lubitz G.S. et al. Cancer vaccines. P. the next immunotherapy frontier. Nat. Cancer. 2022. V. 3 (8). P. 911-926.
- Sadanaga N., Nagashima H., Mashino K. et al. Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas. Clin. Cancer Res. 2001. V. 7 (8). P. 2277-2284.
- van Baren N., Bonnet M.C., Dreno B. et al. Tumoral and immunologic response after vaccination of melanoma patients with an ALVAC virus encoding MAGE antigens recognized by T cells. J. Cin. Oncol. 2005. V. 23 (35). P. 9008-9021.
- Vansteenkiste J., Zielinski M., Linder A. et al. Adjuvant MAGE-A3 immunotherapy in resected non-small-cell lung cancer. P. phase II randomized study results. J. Clin. Oncol. 2013. V. 31 (19). P. 2396-2403.
- Takahashi N., Ohkuri T., Homma S. et al. First clinical trial of cancer vaccine therapy with artificially synthesized helper/ killer-hybrid epitope long peptide of MAGE-A4 cancer antigen. Cancer Sci. 2012. V. 103 (1). P. 150-153.
- Batchu R.B., Gruzdyn O.V., Moreno-Bost A.M. et al. Efficient lysis of epithelial ovarian cancer cells by MAGE-A3-induced cytotoxic T lymphocytes using rAAV-6 capsid mutant vector. Vaccine. 2014. V. 32 (8). P. 938-943.
- Kranz L.M., Diken M., Haas H. et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature. 2016. V. 534 (7607). P. 396-401.
- Babunashvili N.B., Gippius S.N., Kadysheva A.M., Sroslova V.M. Rol subpopulyatsiy T-khelperov v immunopatogeneze onkologicheskikh zabolevaniy. Tekhnologii zhivykh sistem. 2020. T. 17. № 5. S. 54–72. DOI: 10.18127/j20700997-202005-04 (in Russian).
- Baranova A.N., Gulyayeva M.A., Egorova P.N., Fayfert R.V. Podvodnyye kamni CAR-T-kletochnoy terapii. Tekhnologii zhivykh sistem. 2020. T. 17. № 5. S. 5–23. DOI: 10.18127/j20700997-202005-01 (in Russian).