A.А. Bilyalova1, O.S. Kozlova2, D.D. Filimoshina3, А.I. Bilyalov4, Т.А. Voronina5, G.R. Gazizova6, N.S. Filatov7, А.А. Titova8, K.N. Sultanova9, Е.I. Shagimardanova10, M.V. Vorontsova11, О.А. Gusev12, А.P. Kiyasov13
1–10, 12, 13 Kazan (Volga region) federal university (Kazan, Russia)
4 The Loginov Moscow Clinical Scientific Center Under the Health Department of Moscow (Moscow, Russia)
11 Lomonosov Moscow State University (Moscow, Russia)
11, 12 Endocrinology Research Centre (Moscow, Russia)
12 Graduate School of Medicine, Juntendo University (Tokyo, Japan)
1 alinayakupova96@yandex.ru, 2 olga-sphinx@yandex.ru, 4 BilyalovAir@yandex.ru, 5 vorotaisiya@gmail.com, 6 grgazizova@gmail.com, 7 ns.filatov@yandex.ru, 8 anjerika@list.ru, 9 kasana555_07@mail.ru, 10 rjuka@mail.ru, 11 maria.v.vorontsova@mail.ru, 12 gaijin.ru@gmail.com, 13 kiassov@mail.ru
In connection with the development of gene and cellular methods for the treatment of adrenal diseases, preclinical studies on animal models, usually mice and rats, are required. However, researchers note that the adrenal glands of these animals morphologically and functionally differ significantly from those of humans. In this regard, the question arises: is it advisable to use these animals as a model for studying adrenal pathologies, in particular for evaluating new treatment methods?
The aim of the work is to study the morphological and molecular genetic structure of the adrenal glands of mice of the Acomys.
We morphologically identified three zones of the adrenal cortex of mice of the genus Acomys: zona reticularis, zona fasciculata, zona glomerulosa, which correlates with the structure of the human adrenal gland. We also detected the expression of the CYP17A1 gene, which is present in humans, but is absent in typical laboratory model animals. The protein of this gene is involved in the formation of cortisol and androgens in the adrenal cortex. An annotation of the cell types of the adrenal gland Acomys, obtained by single cell RNA-seq, is presented in this work for the first time.
The results obtained can later be used as a basis for the creation of a new model animal for the study of diseases of the human adrenal gland.
- Yates R., Katugampola H., Cavlan D., Cogger K., Meimaridou E., Hughes C., Metherell L., Guasti L., King P. Adrenocortical development, maintenance, and disease. Curr. Top. Dev. Biol. 2013. V. 106. P. 239–312. DOI: 10.1016/B978-0-12-416021-7.00007-9
- El Ghorayeb N., Bourdeau I., Lacroix A. Role of ACTH and Other Hormones in the Regulation of Aldosterone Production in Primary Aldosteronism. Front. Endocrinol. (Lausanne). 2016. V. 7(72). P. 75–79. DOI: 10.3389/fendo.2016.00072
- Hyatt P.J., Bhatt K., Tait J.F. Steroid biosynthesis by zona fasciculata and zona reticularis cells purified from the mammalian adrenal cortex. J. Steroid. Biochem. 1983. V. 19(1C). P. 953–959. DOI: 10.1016/0022-4731(83)90039-0
- Rege J., Nakamura Y., Satoh F., Morimoto R., Kennedy M.R., Layman L.C., Honma S., Sasano H., Rainey W.E. Liquid chromatography-tandem mass spectrometry analysis of human adrenal vein 19-carbon steroids before and after ACTH stimulation. J. Clin. Endocrinol. Metab. 2013. V. 98(3). P. 1182–1188. DOI: 10.1210/jc.2012-2912
- Dagerlind A., Pelto-Huikko M., Diez M., Hökfelt T. Adrenal medullary ganglion neurons project into the splanchnic nerve. Neuroscience. 1995. V. 69(4). P.1019–1023. DOI: 10.1016/0306-4522(95)00305-3
- Anderson D.J., Axel R. Molecular probes for the development and plasticity of neural crest derivatives. Cell. 1985. V. 42(2). P. 649–662. DOI: 10.1016/0092-8674(85)90122-9
- Wurtman R.J., Axelrod J. Adrenaline synthesis: control by the pituitary gland and adrenal glucocorticoids. Science. 1965. V. 10(150). P. 1464–1465. DOI: 10.1126/science.150.3702.1464
- Glazova O., Bastrich A., Deviatkin A., Onyanov N., Kaziakhmedova S., Shevkova L., Sakr N., Petrova D., Vorontsova M.V., Volchkov P. Models of Congenital Adrenal Hyperplasia for Gene Therapies Testing. Int. J. Mol. Sci. 2023. V. 10(24). P. 5365. DOI: 10.3390/ijms24065365
- Beuschlein F., Galac S., Wilson D.B. Animal models of adrenocortical tumorigenesis. Mol. Cell. Endocrinol. 2012. V. 351(1). P. 78–86. DOI: 10.1016/j.mce.2011.09.045
- Keeney D.S., Jenkins C.M., Waterman M.R. Developmentally regulated expression of adrenal 17 alpha-hydroxylase cytochrome P450 in the mouse embryo. Endocrinology. 1995. V. 136(11). P. 4872–4879. DOI: 10.1210/endo.136.11.7588219
- Huang C.C., Kang Y. The transient cortical zone in the adrenal gland: the mystery of the adrenal X-zone. J. Endocrinol. 2019. V. 241(1). P. 51–63. DOI: 10.1530/JOE-18-0632
- Jefferson W.N., Chevalier D.M., Phelps J.Y., Cantor A.M., Padilla-Banks E., Newbold R.R., Archer T.K., Kinyamu H.K., Williams C.J. Persistently altered epigenetic marks in the mouse uterus after neonatal estrogen exposure. Mol. Endocrinol. 2013. V. 27(10). P. 1666–1677. DOI: 10.1210/me.2013-1211
- Daubner S.C., Le T., Wang S. Tyrosine hydroxylase and regulation of dopamine synthesis. Arch. Biochem. Biophys. 2011. V. 508(1). P. 1–12. DOI: 10.1016/j.abb.2010.12.017
- Stocco D.M. The role of the StAR protein in steroidogenesis: challenges for the future. J. Endocrinol. 2000. V. 164(3). P. 247–253. DOI: 10.1677/joe.0.1640247
- Rasmussen M.K, Ekstrand B., Zamaratskaia G. Regulation of 3β-hydroxysteroid dehydrogenase/Δ⁵-Δ⁴ isomerase: a review. Int. J. Mol. Sci. 2013. V. 14(9). P. 17926–17942. DOI: 10.3390/ijms140917926
- Nakamura Y., Xing Y., Hui X.G., Kurotaki Y., Ono K., Cohen T., Sasano H., Rainey W.E. Human adrenal cells that express both 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2) and cytochrome b5 (CYB5A) contribute to adrenal androstenedione production. J. Steroid Biochem. Mol. Biol. 2011. V. 123(3-5). P. 122–126. DOI: 10.1016/j.jsbmb.2010.12.001
- Bergman J., Botling J., Fagerberg L., Hallström B.M., Djureinovic D., Uhlén M., Pontén F. The Human Adrenal Gland Proteome Defined by Transcriptomics and Antibody-Based Profiling. Endocrinology. 2017. V. 158(2). P. 239–251. DOI: 10.1210/en.2016-1758
- Oliverio M.I., Kim H.S., Ito M., Le T., Audoly L., Best C.F., Hiller S., Kluckman K., Maeda N., Smithies O., Coffman T.M. Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc. Natl. Acad. Sci. U S A. 1998. V. 95(26). P. 5496–5501. DOI: 10.1073/pnas.95.26.15496
- Ahn C.H., Na H.Y., Park S.Y., Yu H.W., Kim S.J., Choi J.Y., Lee K.E., Kim S.W., Jung K.C., Kim J.H. Expression of CYP11B1 and CYP11B2 in adrenal adenoma correlates with clinical characteristics of primary aldosteronism. Clin. Endocrinol. (Oxf). 2022. V. 96(1). P. 30–39. DOI: 10.1111/cen.14628
- Tikhonova G.A., Kotov O.V., Markin A.A. Biomarkery kak instrument mediko-biologicheskogo monitoringa i kontrolya (Obzor literatury. Chast 1). Tekhnologii zhivykh sistem. 2023. T. 20. № 2. S. 18–26. DOI: https://doi.org/10.18127/j20700997-202302-02 (in Russian).
- Bobkov A.P., Frantsuzevich L.Ya., Krasnova T.N., Samokhodskaya L.M. Traditsionnyye i maloizvestnyye funktsii angiotenzin-prevrashchayushchego fermenta. Tekhnologii zhivykh sistem. 2019. T. 16. № 4. S. 22–34. DOI: 10.18127/j20700997-201904-03 (in Russian).