V.S. Sibirtsev1, A.G. Kuzmin2, A.Yu. Titov3, A.Yu. Zaitseva4, O.A. Abdillaeva5
1,5 Saint Petersburg state chemical and pharmaceutical university (Saint-Petersburg, Russia)
1–4 Institute for analytical instrumentation of RAS (Saint-Petersburg, Russia)
1 vs1969r@mail.ru, 2 agqz55@rambler.ru, 3 jurtit34@rambler.ru, 4 anna@da-24.ru, 5 ojshahon.abdillaeva@spcpu.ru
Control of the quality and toxic safety of various food products has become increasingly important in recent years. One of the effective tools for such control is mass spectrometry, which has the advantages of wide versatility combined with high sensitivity, selectivity and rapidity of analysis. In turn, dairy products are one of the most important components of human nutrition. In this connection, the purpose of this work was to study the possibilities of using gas mass spectrometric analysis to assess the quality, composition and toxic safety of samples of various dairy products (including materials used for their packaging).
The objects of research in this work were samples of “fresh” and “acceleratedly expired” yoghurts, industrially produced by different manufacturers with various starters, functional food additives, etc. These samples (including the materials used for their packaging) were evaluated using a small-sized quadrupole gas mass spectrometer “MS7-200” with electron impact ionization developed at the IAI RAS. After that, “intelligent” mathematical processing of the obtained data was carried out using the “principal component method”.
Having examined 7 “fresh” and “acceleratedly expired” samples of various fermented milk products using the method described above, we were able to reliably differentiate them (by ratios of peak intensities at m/z = 55, 56, 57, 58, 59, 60, 61, 64, 67, 69, 70, 71, 72, 73, 74, 84, 85 and 88 Da on the evaporation mass spectra of these samples) not only by the degree of “freshness”, but also by the composition and quality of the microbiological starters, dairy raw materials, food additives, etc. used in the manufacture of the mentioned samples. In addition, based on the assessment of peak intensities in evaporation mass spectra of materials used to package the indicated samples, at m/z = 53, 54, 55, 56, 60, 67, 69, 70, 83, 84, 85 and 86 Da, a number of packages with increased potential toxicity have been identified.
Thus, it was shown that the set of approaches presented in this work (including methods for selecting gas emissions from analyzed samples of dairy products and materials used for their packaging + method of “accelerated acidification” of the analyzed samples + method of mathematical processing of the data obtained using multivariate statistical analysis methods, etc.) allows the use of gas mass spectrometry as one of the highly effective methods for monitoring the quality, composition and toxic safety of various dairy products (including materials used for their packaging), which has such advantages as availability for widespread use, rapidity, cost-effectiveness, high sensitivity and selectivity of analysis, etc.
Sibirtsev V.S., Kuzmin A.G., Titov A.Yu., Zaitseva A.Yu., Abdillaeva O.A. Method of mass spectrometric quality control of fermented milk products. Technologies of Living Systems. 2024. V. 21. № 1. Р. 39-53. DOI: https://doi.org/10.18127/j20700997-202402-04 (In Russian).
- Usenko N.I., Yakovleva L.A., Otmakhova Yu.S. Informatsionnaya asimmetriya i osobennosti potrebitelskogo povedeniya na rynke molochnoy produktsii. Tekhnika i tekhnologiya pishchevykh proizvodstv. 2016. T. 41. № 2. S. 156-163. (in Russian).
- Shemchuk M.A., Komarcheva O.S., Shadrin V.G. Baryery marketingovykh kommunikatsiy i puti ikh preodoleniya. Tekhnika i tekhnologiya pishchevykh proizvodstv. 2023. T. 53. № 2. S. 294–308. https://doi.org/10.21603/2074-9414-2023-2-2433 (in Russian).
- Komarova O.N., Khavkin A.I. Kislomolochnyye produkty v pitanii detey: pishchevaya i biologicheskaya tsennost. Rossiyskiy vestnik perinatologii i pediatrii. 2017. T. 62. № 5. S. 80–86. https://doi.org/10.21508/1027-4065-2017-62-5-80-86 (in Russian).
- Shiby V.K., Mishra H.N. Fermented milks and milk products as functional foods. Critical Reviews in Food Science and Nutrition. 2013. V. 53. № 5. P. 482–496. https://doi.org/10.1080/10408398.2010.547398
- Amarowicz R. Squalene: a natural antioxidant?. European Journal of Lipid Science and Technology. 2009. V. 111. № 5. P. 411–412. https://jast-journal.springeropen.com/ articles/10.1186/s40543-021-00286-2
- Asafov V.A., Tankova N.L., Iskakova E.L. Funktsionalnyy vysokobelkovyy napitok s gidrolizatom kazeina i belkovymi fraktsiyami moloziva. Innovatsii i prodovolstvennaya bezopasnost. 2018. T. 20. № 2. S. 51–54. (in Russian).
- Donskaya G.A., Drozhzhin V.M., Bryzgalina V.V. Napitki kislomolochnyye s povyshennym soderzhaniyem syvorotochnykh belkov i vodorastvorimykh antioksidantov.. Vestnik Murmanskogo gosudarstvennogo tekhnicheskogo universiteta. 2018. T. 21. № 3. S. 471–480. https://doi.org/10.21443/1560-9278-2018-21-3-471-480 (in Russian).
- Zobkova Z.S., Fursova T.P., Zenina D.V., Gavrilina A.D., Shelaginova I.R., Drozhzhin V.M. Vybor istochnikov biologicheski aktivnykh veshchestv dlya funktsionalnykh kislomolochnykh produktov. Molochnaya promyshlennost. 2018. № 3. S. 59–62. https://doi. org/10.31515/ 1019-8946-2018-3-59-62 (in Russian).
- Vasquez-Mazo P., Loredo A.G., Ferrario M., Guerrero S. Development of a novel milk processing to produce yogurt with improved quality. Food and Bioprocess Technology. 2019. V. 12. P. 964–975. https://doi.org/10.1007/s11947-019-02269-z
- Agarkova E.Yu., Ryazantseva K.A., Kruchinin A.G. Protivodiabeticheskaya aktivnost belkov molochnoy syvorotki. Tekhnika i tekhnologiya pishchevykh proizvodstv. 2020. T. 50. № 2. S. 306–318. https://doi.org/10.21603/2074-9414-2020-2-306-318 (in Russian).
- Yankovskaya V.S., Dunchenko N.I., Mikhaylova K.V. Razrabotka strukturirovannykh molochnykh produktov s uchetom dannykh o reklamatsiyakh i metodologii kvalimetrii riskov. Tekhnika i tekhnologiya pishchevykh proizvodstv. 2022. T. 52. № 1. S. 2–12. https://doi.org/10.21603/2074-9414-2022-1-2-12 (in Russian).
- Wishart D.S. Metabolomics: applications to food science and nutrition research. Trends in Food Science & Technology. 2008. V. 19.
№ 9. P. 482–493. https://doi.org/10.1016/j.tifs.2008.03.003 - Sibirtsev V.S. Fluorescent DNA probes: study of mechanisms of changes in spectral properties and features of practical application. Biochemistry (Moscow). 2007. V. 72. № 8. P. 887–900. http://doi.org/10.1134/S0006297907080111
- Sibirtsev V.S., Naumov I.A., Kuprina E.E., Olekhnovich R.O. Use of impedance biotesting to assess the actions of pharmaceutical compounds on the growth of microorganisms. Pharmaceutical Chemistry Journal. 2016. V. 50. №. 7. P. 481–485. http://doi.org/10.1007/s11094-016-1473-3
- Sibirtsev V.S. Biological test methods based on fluorometric genome analysis. Journal of Optical Technology. 2017. V. 84. № 11. P. 787–791. http://doi.org/10.1364/JOT.84.000787
- Xie Y., Hu Q., Zhao M., Cheng Y., Guo Y., Qian H., Yao W. Simultaneous determination of erythromycin. tetracycline. and chloramphenicol residue in raw milk by molecularly imprinted polymer mixed with solid-phase extraction. Food Analytical Methods. 2018. V. 11. № 2. P. 374–381. https://doi.org/10.1007/s12161-017-1008-x
- Kokina M.S., Frioui M., Shamtsyan M., Sibirtsev V.S., Krasnikova L.V., Konusova V.G., Simbirtsev A.S. Influence of pleurotus ostreatus beta-glucans on the growth and activity of certain lactic acid bacteria. Scientific Study and Research: Chemistry and Chemical Engineering. Biotechnology. Food Industry. 2018. V. 19. № 4. P. 465–471. https://researchgate.net/publication/329935544
- Yurova E.A. Osobennost kontrolya molochnoy produktsii po pokazatelyam kachestva i bezopasnosti. Pererabotka moloka. 2019. T. 234. № 4. S. 6–9. https://www.elibrary.ru/KLXMWE (in Russian).
- Sibirtsev V.S., Uspenskaya M.V., Garabadzhi A.V., Shvets V.I. Complex methods of instrumental microbiological testing of environmental safety of various products. wastes and territories. Doklady Biological Sciences. 2019. V. 485. № 6. R. 59–61. https://doi.org/10.1134/S001249661902011X
- Sibirtsev V.S., Garabadgiu A.V., Shvets V.I. New technique for integrated photofluorescence microbiotesting. Doklady Biological Sciences. 2019. V. 489. № 6. P. 196–199. https://doi.org/10.1134/S0012496619060103
- Sibirtsev V.S., Nechiporenko U.Yu. Method of electrochemical biotesting for comparative analysis of probiotic and antibiotic properties of various plant extracts. Fine Chemical Technologies (Tonkie Khimicheskie Tekhnologii). 2020. V. 15. № 6. P. 34–43. https://doi.org/10.32362/ 2410-6593-2020-15-6-34-43
- Sibirtsev V.S., Nechiporenko U.Yu., Kabanov V.L., Kukin M.Yu. Metodika optiko-elektrokhimicheskogo mikrobiologicheskogo testirovaniya v primenenii k sravnitelnomu analizu svoystv efirnykh masel. Tekhnika i tekhnologiya pishchevykh proizvodstv. 2020. T. 50. № 4.
S. 650–659. https://doi.org/10.21603/2074-9414-2020-4-650-659 (in Russian). - Akter M.S., Islam R., Shoeb M., Nahar N. Determination of chloramphenicol in meat samples using liquid chromatography– tandem mass spectrometry. Food Science and Nutrition. 2021. V. 9. № 10. P. 5670–5675. https://doi.org/10.1002/fsn3.2530
- Wu S.W., Ko J.L., Liu B.H., Yu F.Y. A sensitive two-analyte immunochromatographic strip for simultaneously detecting aflatoxin M1 and chloramphenicol in milk. Toxins. 2020. V. 12. № 10. https://doi.org/10.3390/toxins12100637
- Zhao M., Li X., Zhang Y., Wang Y., Wang B., Zheng L. Rapid quantitative detection of chloramphenicol in milk by microfluidic immunoassay. Food Chemistry. 2021. V. 339. https://doi.org/10.1016/j.foodchem.2020.127857
- Vuran B., Ulusoy H.I., Sarp G., Yilmaz E., Morgul U., Kabir A. Determination of chloramphenicol and tetracycline residues in milk samples by means of nanofiber coated magnetic particles prior to high-performance liquid chromatographydiode array detection. Talanta. 2021. V. 230. https://doi.org/10.1016/j.talanta.2021.122307
- Kurchenko V.P., Simonenko E.S., Sushinskaya N.V., Khalavach T.M., Petrov A.N., Simonenko S.V. Identifikatsiya kobylim molokom i ego smesyu s korovim molokom metodom VEZhKh. Tekhnika i tekhnologiya pishchevykh proizvodstv. 2021. T. 51. № 2. S. 402–412. https://doi.org/10.21603/2074-9414-2021-2-402-412 (in Russian).
- Chaplygina O.S., Prosekov A.Yu., Vesnina A.D. Metody otsenki ostatochnogo kolichestva antibiotikov gruppy amfenikola v moloke i molochnoy produktsii. Tekhnika i tekhnologiya pishchevykh proizvodstv. 2022. T. 52. № 1. S. 79–88. https://doi.org/10.21603/2074-9414-2022-1-79-88 (in Russian).
- Anan'eva E.P., Bogdanova O.Yu., Gurina S.V., Sibirtsev V.S. Using a conductometric method in microbiological control of natural excipients. Pharmaceutical Chemistry Journal. 2022. 56. № 6. P. 872–876. https://doi.org/10.1007/s11094-022-02721-z
- Tikhonova G.A., Kotov O.V., Markin A.A. Biomarkery kak instrumenty mediko-biologicheskogo monitoringa i kontrolya. Tekhnologii zhivykh sistem. 2023. T. 20. № 4. S. 5–18. https://doi.org/10.18127/j20700997-202304-01 (in Russian).
- Goncharova A.G., Tikhonova G.A., Goncharov I.N., Markin A.A. Pishchevaya allergiya i pishchevaya neperenosimost. Problemy klinicheskogo kontrolya. Tekhnologii zhivykh sistem. 2023. T. 20. № 4. S. 80–92. https://doi.org/10.18127/j20700997-202304-08 (in Russian).
- Sibirtsev V.S., Nechiporenko U.Yu., Kabanov V.L., Kukin M.Yu., Radin M.A. Metodika elektrokhimicheskogo mikrobiologicheskogo testirovaniya v primenenii k sravnitelnomu analizu svoystv razlichnykh rastitelnykh ekstraktov. Zhurnal Sibirskogo Federalnogo Universiteta. Ser. Biologiya. 2023. T. 16. № 1. S. 109–124. https://elibrary.ru/item.asp?id=50440390 (in Russian).
- Muratshin A.M., Shmakov V.S., Tyrsin Yu.A. Determination of the nature of ethanol by chromatography-mass spectrometry. Beer and Drinks. 2005. № 6. P. 40–42.
- Milman B.L., Konopelko L.A. Modern mass spectrometry: proportions of development. Mass Spectrometry. 2006. V. 3. № 4. P. 271–276. https://elibrary.ru/item.asp?edn=hvisdh
- Dass C. Fundamentals of contemporary mass spectrometry. John Wiley & Sons. 2007. 513 p. https://onlinelibrary.wiley.com/ doi/book/10.1002/0470118490
- Milman B.L., Zhurkovich I.K. Mass spectrometric analysis of medical samples and aspects of clinical diagnostics. Journal of Analytical Chemistry. 2015. V. 70. № 10. P. 1179–1191. https://doi.org/10.1134/S1061934815100135
- Kuzmin A.G., Tkachenko E.I., Oreshko L.S., Titov Yu.A., Balabanov A.S. Method of mass spectrometric express diagnostics by the composition of exhaled air. Medical Academic Journal. 2016. V. 16. № 4. P. 106–107.
- Manoilov V.V., Kuzmin A.G., Titov Yu.A. Extraction of information attributes from the mass spectrometric signals of air. Journal of Analytical Chemistry. 2016. V. 71. № 14. P. 1301–1308. https://doi.org/10.1134/S1061934816140094
- Lu H., Zhang H., Chingin K., Fang X., Chen H., Xiong J. Ambient mass spectrometry for food science and industry. Trends in Analytical Chemistry. 2018. V. 107. P. 99–115. https://doi.org/10.1016/j.trac.2018.07.017
- Manoylov V.V., Zarutskiy I.V., Kuzmin A.G., Titov Yu.A., Samsonova N.S. Metody obrabotki i issledovaniye vozmozhnostey klassifikatsii mass-spektrov vydykhayemykh gazov. Nauchnoye priborostroyeniye. 2019. T. 29. № 1. S. 106–111. https://doi.org/10.18358/np-29-1-i106110 (in Russian).
- Manoilov V.V., Novikov L.V., Zarutskii I.V., Kuz’min A.G., Titov Yu.A. Methods for processing mass spectrometry signals from exhaled gases for medical diagnosis. Biomedical Engineering. 2020. V. 53. № 5. P. 355–359. https://doi.org/10.1007/s10527-020-09942-0
- Kim J.O., Mueller C.W., Klekka W.R., Oldenderfer M.S., Blashfield R.K. Factor analysis: statistical methods and practical issues. Eleventh Printing. 1986. 509 p.