350 rub
Journal Technologies of Living Systems №2 for 2024 г.
Article in number:
Microbiological safety of bone replacement materials: methodological basis and development strategy
Type of article: overview article
DOI: https://doi.org/10.18127/j20700997-202402-02
UDC: 579.61; 617.3
Authors:

N.R. Emer1, V.P. Panin2, V.V. Krasnov3

1–3 All-Russian Research Institute of Medicinal and Aromatic Plants (FGBNU VILAR) (Moscow, Russia)

1 emer2005s@gmail.com, 2 zip1@list.ru, 3 v.v.krasnov@mail.ru

Abstract:

Modern strategies of bone defects recovery are aimed at preserving and improving standard methods of auto- and alloplasty, introducing to practice the use of xenogeneic biomaterials and development of an interdisciplinary approach which brings together new achievements in bioengineering and materials science. The methods used are aimed at creating mechanically- and biocompatible grafts which can be used to repair significant bone damage. To make grafts, both donor bone (autogenous, allogeneic and xenogeneic), bioengineered products and artificial materials are used. Autografts provide the best compatibility with recipient tissues. Allografts have all the advantages of natural bone tissue, but their production is more labor-intensive. There is an increasing number of articles reporting the use of xenografts. Tissue-engineered structures - “scaffolds” - in which human stem cells, growth factors, and artificial materials are combined to produce bone tissue have great potential. The chemical composition of the scaffold affects its compatibility with cells and tissues. Thus, material selection is an important part of bone engineering. To create scaffolds demineralized bone tissue, bioceramics, metals, and polymers are used. But composite materials are the leaders, because they combine the advantages of natural and artificial substances. In general, successful graft creation depends on many factors. But the most important are safety issues, and in particular biosafety. The problems of disinfection have not yet been completely resolved. The scientific literature presents an extensive list of sterilization methods. The most common and economically feasible methods are ionizing radiation and ethylene oxide sterilization. There are many protocols, adapted for application to various materials, in the group of thermal sterilization methods. Ultraviolet and microwave radiation, low-temperature plasma, and liquid chemical media are used as independent sterilizing agents and in combination to develop methods that have a gentle effect on the transplant. Тhe use of supercritical substances makes it possible to include the sterilization process in the production cycle of bone replacement material. The use of nanomaterials and nanostructures makes it possible to impart unique properties to the graft material, providing a self-sterilization effect. Thus, achievements in materials science, the development of tissue engineering and the creation of unique materials with new properties are updating the issues of biosafety and comprehensive solutions to sanitary, medical, engineering and economic problems.

Pages: 18-29
For citation

Emer N.R., Panin V.P., Krasnov V.V. Microbiological safety of bone replacement materials: methodological basis and development strategy. Technologies of Living Systems. 2024. V. 21. № 2. Р. 18-29. DOI: https://doi.org/10.18127/j20700997-202402-02 (In Russian).

References
  1. Steijvers E., Ghei A., Xia Z. Manufacturing artificial bone allografts: a perspective. Biomaterials Translational. 2022. V. 3. № 1. P. 65–80. DOI: 10.12336/biomatertransl.2022.01.007
  2. Popkov A.V., Popkov D.A., Kononovich N.A. i dr. Bioaktivnyye implantaty pri lechenii psevdoartrozov i defektov dlinnykh trubchatykh kostey: Monografiya. Pod red. A.V. Popkova. Tomsk: Izd-vo Tomskogo politekhnicheskogo universiteta. 2021. 312 s. (in Russian).
  3. Singh R., Singh D., Singh A. Radiation sterilization of tissue allografts: A review. World Journal of Radiology. 2016. V. 8. № 4. P. 355–369. DOI: 10.4329/wjr.v8.i4.355
  4. Lomas R., Chandrasekar A., Board T.N. Bone allograft in the UK: perceptions and realities. Hip. Int. 2013. V. 23. № 5. P. 427–433. DOI:10.5301/hipint.5000018
  5. Vorobyev K.A., Bozhkova S.A., Tikhilov R.M., Chernyy A.Zh. Sovremennyye sposoby obrabotki i sterilizatsii allogennykh kostnykh tkaney (obzor literatury). Travmatologiya i ortopediya Rossii. 2017. T. 23. № 3. DOI:10.21823/2311-2905-2017-23-3-134-147 (in Russian).
  6. Labutin D., Vorobyov K., Bozhkova S. et al. Human bone graft cytocompatibility with mesenchymal stromal cells is comparable after thermal sterilization and washing followed by c-irradiation: an in vitro study. Regenerative Biomaterials. 2018. P. 85–92. DOI: 10.1093/rb/rby002
  7. Schnettler R., Franke J., Rimashevskiy D. et al. Allogeneic bone grafting materials – update of the current scientific status. Traumatology and orthopedics of Russia. 2017. V. 23. № 4. P. 92–100. DOI:10.21823/2311-2905-2017-23-4-92-100
  8. Capella-Monsonís H., Zeugolis D.I. Decellularized xenografts in regenerative medicine: From processing to clinical application. Xenotransplantation. 2021. V. 28. Iss. 4. 27 p. https://doi.org/10.1111/xen.12683
  9. Draenert G.F., Delius M. The mechanically stable steam sterilization of bone grafts. Biomaterials. 2007. V. 28. P. 1531–1538. DOI: 10.1016/j.biomaterials.2006.11.029
  10. Giudice R.L., Rizzo G., Centofanti A. et al. Steam sterilization of equine bone block: morphological and collagen analysis. Bio Med. Research International. 2018. Article ID 9853765. 8 p. https://doi.org/10.1155/2018/9853765
  11. Patent № 2 679 121 Rossiyskaya Federatsiya. MPK A61F 2/28 (2006.01) A61K 35/32 (2015.01) A61L 2/08 (2006.01) A61L 2/16 (2006.01) A61L 101/10 (2006.01) A01N 1/00 (2006.01). SPK A61F 2/28 (2018.08); A61K 35/32 (2018.08); A61L 2/08 (2018.08); A61L 2/16 (2018.08); A01N 1/00 (2018.08). Sposob polucheniya kostnogo implantata na osnove sterilnogo demineralizovannogo kostnogo matriksa: zayavleno 23.11.2018: opublikovano 06.02.2019. Yu.Yu. Litvinov. V.A. Bykov. N.I. Sidelnikov. I.V. Matveychuk. V.V. Rozanov. V.V. Krasnov; zayavitel Federalnoye gosudarstvennoye byudzhetnoye nauchnoye uchrezhdeniye Vserossiyskiy nauchno-issledovatelskiy institut lekarstvennykh i aromaticheskikh rasteniy (FGBNU VILAR). 7 s. (in Russian).
  12. Dai Z., Ronholm J., Tian Y., Sethi B., Cao X. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. Journal of Tissue Engineering. 2016. V. 7. P. 1–13. DOI: 10.1177/2041731416648810
  13. Shi J., Dai W., Gupta A., Zhang B., Wu Z., Zhang Y., Pan L., Wang L. Frontiers of Hydroxyapatite Composites in Bionic Bone Tissue Engineering. Materials. 2022. V. 15. P. 8475. https://doi.org/10.3390/ ma15238475
  14. Kandelousi P.S., Rabiee S.M., Jahanshahi M., Nasiri F. The effect of bioactive glass nanoparticles on polycaprolactone/chitosan scaffold: Melting enthalpy and cell viability. Journal of Bioactive and Compatible Polymers. 2019. V. 34. № 1. P. 97–111. DOI: 10.1177/0883911518819109
  15. Tang S., Jiang L., Jiang Z. et al. Improving the mechanical, degradation properties and biocompatibility of nano hydroxyapatite/chitosan composite scafold by the introduction of carboxylated bamboo fiber. Cellulose. 2023. V. 30. P. 1585–1597. https://doi.org/10.1007/s10570-022-05001-x
  16. Santos-Rosales V., Magarinos B., Starbird R. et al. Supercritical CO2 technology for one-pot foaming and sterilization of polymeric scaffolds for bone regeneration. International Journal of Pharmaceutics. 2021. V. 605. 9 p. https://doi.org/10.1016/j.ijpharm.2021.120801
  17. Marolt D., Knezevic M., Novakovic G.V. Bone tissue engineering with human stem cells. Stem Cell Research & Therapy. 2010. P. 1–10. DOI: 10.1186/scrt10
  18. Tsiklin I., Shabunin A.V., Kolsanov A.V., Volova L.T. In vivo bone tissue engineering strategies: advances and prospects. Polymers. 2022. V. 14. 29 p. https://doi.org/10.3390/polym14153222
  19. Sladkova M., de Peppo G.M. Bioreactor systems for human bone tissue engineering. Processes. 2014. V. 2. P. 494–525. DOI: 10.3390/pr2020494
  20. Rozanov V.V., Matveychuk I.V. Sovremennoye sostoyaniye i perspektivnyye innovatsionnyye napravleniya razvitiya sposobov sterilizatsii bioimplantatov. Almanakh klinicheskoy meditsiny. 2019. Vyp. 47. №7. S. 634–646. DOI: 10.18786/2072- 0505-2019-47-063 (in Russian).
  21. Griffin M., Naderi N., Kalaskar D.M. et al. Evaluation of sterilisation techniques for regenerative medicine scaffolds fabricated with polyurethane nonbiodegradable and bioabsorbable nanocompositematerials. International Journal of Biomaterials. 2018. Article ID 6565783. 14 p. https://doi.org/10.1155/2018/6565783
  22. Yasin N.F., Singh V.A., Saad M., Omar E. Which is the best method of sterilization for recycled bone autograft in limb salvage surgery: a radiological, biomechanical and histopatological study in rabbit. BMC Cancer. 2015. V. 15. 11 p. DOI: 10.1186/s12885-015-1234-9
  23. Radiation sterilization of tissue allografts: requirements for validation and routine control. A code of practice. Vienna: International Atomic Energy Agency. 2008.
  24. Rozanov V.V., Matveychuk I.V., Chernyayev A.P., Nikolayeva N.A. Izmeneniya morfomekhanicheskikh kharakteristik kostnykh implantatov pri radiatsionnoy sterilizatsii. Izvestiya RAN. Ser. fizicheskaya. 2019. T. 83. № 10. S. 1435–1440. DOI: 10.1134/S0367676519040203 (in Russian).
  25. Lekishvili M.V., Panasyuk A.F. Novyye bioplasticheskiye materialy v rekonstruktivnoy khirurgii. Biomaterialy v rekonstruktivnoy khirurgii. 2000. Elektronnyy resurs. Kod dostupa: https://bioimplantat.ru/articles/travmatologiya/biomaterialy-v-rekonstruktivnoy-khirurgii/ (in Russian).
  26. Islam A., Chapin K., Moore E. et al. Gamma radiation sterilization reduces the high-cycle fatigue life of allograft bone. Clinical Orthopaedics and Related Research. 2016. V. 474. P. 827–835. DOI: 10.1007/s11999-015-4589-y
  27. Nguyen H., Morgan D.A.F., Forwood M.R. Sterilization of allograft bone: effects of gamma irradiation on allograft biology and biomechanics. Cell Tissue Banking. 2007. V. 8. P. 93–105. DOI:10.1007/s10561-006-9020-1
  28. Harrell C.R., Djonov V., Fellabaum C., Volarevic V. Risks of using sterilization by gamma radiation: The other side of the coin. International Journal of Medical Sciences. 2018. V. 15. № 3. P. 274–279. DOI: 10.7150/ijms.22644
  29. Suhardi J.V., Morgan D.F.A., Muratoglu O.K., Oral E. Radioprotection and cross-linking of allograft bone in the presence of vitamin E. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2020. P. 1–14. DOI: 10.1002/jbm.b.34569
  30. Kattaya S.A., Akkus O., Slama J. Radioprotectant and radiosensitizer effects on sterility of c-irradiated bone. Clinical Orthopaedics and Related Research. 2008. V. 466. P. 1796–1803. DOI: 10.1007/s11999-008-0283-7
  31. Bruyas A., Moeinzadeh S., Kim S. et al. Effect of Electron Beam Sterilization on Three-Dimensional-Printed Polycaprolactone/Beta-Tricalcium Phosphate Scaffolds for Bone Tissue Engineering. Tissue Engineering. Part A. 2019. V. 5. № 3-4. P. 248–256. DOI: 10.1089/ten.tea.2018.0130
  32. Beerlage C., Wiese B., Kausch A.R., Arsenijevic M. Change in Radiation Sterilization Process from Gamma Ray to X-ray. Biomedical Instrumentation & Technology. 2021. V. 5. Suppl. 3. P. 78–84. DOI: 10.2345/0899-8205-55. s3.78
  33. Sauer K., Zizak I., Forien J.-B. et al. Primary radiation damage in bone evolves via collagen destruction by photoelectrons and secondary emission self-absorption. Nature communications. 2022. P. 1–12. https://doi.org/10.1038/s41467-022-34247-z
  34. Ahmed M., Punshon G., Darbyshire A., Seifalian A.M. Effects of sterilization treatments on bulk and surface properties of nanocomposite biomaterials. Journal of Biomedical Materials Research Part B. 2013. V. 101B. P. 1182–1190. DOI:10.1002/jbm.b.32928
  35. Yildirimer L., Seifalian A.M. Sterilization-induced changes in surface topography of biodegradable POSS-PCLU and the cellular response of human dermal fibroblasts. Tissue Engineering Part C: Methods. 2015. V. 21. № 6. P. 614–630. DOI: 10.1089/ten.TEC.2014.0270
  36. Naderi N., Griffin M., Malins E., Becer R., Mosahebi A., Whitaker I.S., Seifalian A.M. Slow chlorine releasing compounds: A viable sterilisation method for bioabsorbable nanocomposite biomaterials. Journal of Biomaterials Applications. 2016. V. 30. № 7. P. 1114–1124. DOI: 10.1177/0885328215613666
  37. Singh R., Singh D. Sterilization of bone allografts by microwave and gamma radiation. International Journal of Radiation Biology. 2012. V. 88. № 9. P. 661–666. DOI: 10.3109/09553002.2012.700166
  38. Chlanda A., Kijenska E., Rinoldi et al. Structure and physico-mechanical properties of low temperature plasma treated electrospun nanofibrous scaffolds examined with atomic force microscopy. Micron. 2018. V. 107. P. 79–84. DOI: 10.1016/j.micron.2018.01.012
  39. Tehrani A.H., Davari P., Singh S., Oloyede A. Sterilizing tissue-materials using pulsed power plasma. Journal of Materials Science: Materials in Medicine. 2014. V. 25. № 4. P. 953–964. DOI: 10.1007/s10856-014-5142-3
  40. Pruss A., Gobel U.B., Pauli G. et al. Peracetic acid – ethanol treatment of allogenic avital bone tissue tran transplants – a relieble sterilization method. Annals of Transplantation. 2003. V. 8. № 2. P. 34–42.
  41. Patent № 5.788.941 SShA. Method of sterilization of bone tissue: zayavleno 31.01.1996: opublikovano 04.08.1998. J.P. Dalmasso, T.J. Mielnik; zayavitel Steris Corporation. 6 s. (in Russian).
  42. Rozanov V.V., Matveychuk I.V., Panteleyev I.V., Chernyayev A.P. Ozon kak effektivnyy komponent kombinirovannoy tekhnologii sterilizatsii kostnykh implantatov. Bioradikaly i antioksidanty. 2018. T. 5. № 3. S. 252–254. (in Russian).
  43. Patent № 2 630 464 Rossiyskaya Federatsiya. MPK A61L 2/08 (2006.01) A61L 2/16 (2006.01) A61L 101/10 (2006.01) A61F 2/28 (2006.01). Kombinirovannyy sposob sterilizatsii kostnykh implantatov: zayavleno 29.07.2016: opublikovano 08.09.2017. I.V. Matveychuk, V.V. Rozanov, I.K. Gordonova, Z.K. Nikitina, N.I. Sidelnikov, Yu.Yu. Litvinov, A.A. Nikolayeva, A.P. Chernyayev, I.V. Panteleyev; zayavitel Federalnoye gosudarstvennoye byudzhetnoye nauchnoye uchrezhdeniye Vserossiyskiy nauchno-issledovatelskiy institut Lekarstvennykh i aromaticheskikh rasteniy (FGBNU VILAR). 9 s. (in Russian).
  44. Souto-Lopes M., Grenho L., Manrique Y.A. et al. Full physicochemical and biocompatibility characterization of a supercritical CO2 sterilized nano-hydroxyapatite/chitosan biodegradable scaffold for periodontal bone regeneration. Biomaterials Advances. 2023. V. 146. 16 p. https://doi.org/10.1016/j.bioadv.2023.213280
  45. Uquillas J.A., Spierings J., van der Lande A. et al. An off-the-shelf decellularized and sterilized human bone-ACL-bone allograft for anterior cruciate ligament reconstruction. Journal of the Mechanical Behavior of Biomedical Materials. 2022. V. 135. 14 p. https://doi.org/10.1016/j.jmbbm.2022.105452
  46. Bento C.S.A., Gaspar M.C., Coimbra P., de Sousa H.C., Braga M.E.M. A review of conventional and emerging technologies for hydrogels sterilization. International Journal of Pharmaceutics. 2023. V. 634. 11 p. https://doi.org/10.1016/j.ijpharm.2023.122671
  47. Periproteznaya infektsiya. Perspektivy diagnostiki. osobennosti lecheniya. strategii profilaktiki i ikh ekonomicheskiye izderzhki. Pod. red.
    K.-D. Kyuna; per. s angl. Pod red. A.V. Tsiskarashvili. N.V. Zagorodnego. D.S. Gorbatyuka. M.: GEOTAR-Media. 2022. 552 s. (in Russian).
  48. Mauro N., Fiorica., Giuffrè M. et al. A self-sterilizing fluorescent nanocomposite as versatile material with broad-spectrum antibiofilm features. Materials Science and Engineering: C. 2020. V. 117. 10 p. https://doi.org/10.1016/j.msec.2020.111308
  49. Rozanov V.V., Matveychuk I.V., Chernyayev A.P. i dr. Eksperimentalnoye podtverzhdeniye effektivnosti kombinirovannoy sterilizatsii kostnykh implantatov. Tekhnologii zhivykh sistem. 2018. T. 15. № 1. S. 41–48. (in Russian).
  50. Kirilova I.A. Anatomo-funktsionalnyye svoystva kosti kak osnova sozdaniya kostno-plasticheskikh materialov dlya travmatologii i ortopedii. M.: Fizmatlit. 2019. 256 s. (in Russian).
  51. Baume A.S., Boughton P.C., Coleman N.V., Ruys A.J. Sterilization of tissue scaffolds. Characterisation and Design of Tissue Scaffolds. 2016. P. 225–244. DOI: 10.1016/B978-1-78242-087-3.00010-9
Date of receipt: 28.11.2023
Approved after review: 27.04.2024
Accepted for publication: 27.05.2024