350 rub
Journal Technologies of Living Systems №1 for 2024 г.
Article in number:
Effect of cortexin on anxiety changes in rats after modeling cerebral ischemia in the neocortex
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700997-202401-05
UDC: 57.043+57.033+612.13+616.8-005
Authors:

N.A. Loginova1, N.V. Panov2

1,2 Institute of higher nervous activity and neurophysiology RAS (Moscow, Russia)

1 nadezhda.loginova1982@gmail.com, 2 nikolay.panov1966@yandex.ru

Abstract:

Cortexin is a multicomponent drug consisting of proteins and stabilized fragments of a DNA. It is used in the clinic for treatement patients after a stroke. After a stroke, in addition to the symptoms associated with neurological deficiency, patients often have anxiety and depression.

The aim of the work was to study the effect of cortexin on changing the behavior of rats in the "open field" and "elevated plus maze" tests after modeling an cerebral ischemia using the photochemical thrombosis method.

After an ischemic stroke, motor and exploratory activity decreased in rats, and anxiety increased. The introduction of cortexin led to the restoration of exploratory behavior in the "elevated plus maze" test.

Cortexin can be used in clinical practice not only to compensate for neurological deficits, but also as an anxiolytic.

Pages: 55-62
For citation

Loginova N.A., Panov N.V. Effect of cortexin on anxiety changes in rats after modeling cerebral ischemia in the neocortex. Technologies of Living Systems. 2024. V. 21. № 1. Р. 55-62. DOI: https://doi.org/10.18127/j20700997-202401-05 (In Russian)

References
  1. Jiang R.-Q., Li Q.-Q., Sheng R. Mitochondria associated ER membranes and cerebral ischemia: molecular mechanisms and therapeutic strategies. Pharmacological Research. 2023. V. 191. Article 106761. DOI: https://doi.org/10.1016/j.phrs.2023.106761
  2. Ma R., Xie Q., Li Y., Chen Z., Ren M., Chen H., Li H., Li J., Wang J. Animal models of cerebral ischemia: a review. Biomedicine and Pharmacotherapy. 2020. V. 131. Article 110686. DOI: https://doi.org/10.1016/j.biopha.2020.110686
  3. Watson B.D., Dietrich W.D., Busto R., Wachtel M.S., Ginsberg M.D. Induction of reproducible brain infarction by photochemically initiated thrombosis. Annals of Neurology. 1985. V. 17. № 5. P. 497–504. DOI: https://doi.org/10.1002/ana.410170513
  4. Kim Y., Lee Y.B., Bae S.K., Oh S.S., Choi J. Development of a photochemical thrombosis investigation system to obtain a rabbit ischemic stroke model. Scientific Reports. 2021. V. 11. Article 5787. DOI: https://doi.org/10.1038/s41598-021-85348-6
  5. Vorobyeva O.V., Rusaya V.V. Farmakoterapiya trevozhnykh rasstroystv u patsiyentov s khronicheskoy ishemiyey golovnogo mozga. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2016. T. 12. Vyp. 2. S. 49–54. DOI: https://doi.org/10.17116/jnevro201611612249-54
    (in Russian).
  6. Parfenov V.A., Zhivolupov S.A., Nikulina K.V., Poverennova I.E., Lapatukhin V.G., Zhestikova M.G., Zhukova N.G., Glazunov A.B. Diagnostika i lecheniye kognitivnykh narusheniy u patsiyentov s khronicheskoy ishemiyey golovnogo mozga: rezultaty Vserossiyskoy neinterventsionnoy nablyudatelnoy programmy DIAMANT. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2018. T. 6. S. 15–23. DOI: https://doi.org/10.17116/jnevro20181186115 (in Russian).
  7. Sasoh M., Ogasawara K., Kuroda K., Okuguchi T., Terasaki K., Yamadate K., Ogawa A. Effects of EC-IC bypass surgery on cognitive impairment in patients with hemodynamic cerebral ischemia. Surgical Neurology. 2003. V. 59. Iss. 6. P. 455–460. DOI: https://doi.org/10.1016/S0090-3019(03)00152-6
  8. Sarti C., Pantoni L., Bartolini L., Inzitari D. Cognitive impairment and chronic cerebral hypoperfusion: what can be learned from experimental models. Journal of the neurological sciences. 2002. V. 203–204. P. 263–266. DOI: https://doi.org/10.1016/S0022-510X(02)00302-7
  9. Raz L., Zhang Q.-G., Zhou C. Han D., Gulati P., Yang L., Yang F., Wang R., Brann D.W. Role of Rac1 GTPase in NADPH oxidase activation and cognitive impairment following cerebral ischemia in the rat. PLoS ONE. 2010. V. 5(9). P. e12606. DOI: https://doi.org/10.1371/journal.pone.0012606
  10. Platonova T.N., Skoromets A.P., Shabalov N.P. Korteksin – mnogoletneye primeneniye v pediatricheskoy praktike. Korteksin – pyatiletniy opyt otechestvennoy nevrologii. Izd. 2-e. Pod red. A.A. Skoromtsa, D.D. Diakonova. M.: Nauka. 2005. 224 s. (in Russian).
  11. Fedota N.V. Organopreparat korteksin. International Journal of Applied and Fundamental Research. 2013. № 10. S. 92–93. (in Russian).
  12. Stakhovskaya L.V., Meshkova K.S., Dadasheva M.N., Chefranova Zh.Yu., Titova L.P., Lokshtanova T.M., Zelenkina N.Yu., Alifirova V.M., Pugachenko N.V., Antukhova O.M., Kovalenko A.V., Doronin B.M., Gordiyenko N.Yu., Shekhovtsova K.V., Salimov K.A., Shamalov N.A. Mnogotsentrovoye randomizirovannoye prospektivnoye dvoynoye slepoye platsebo kontroliruyemoye issledovaniye bezopasnosti i effektivnosti korteksina v ostrom i rannem vosstanovitelnom periode polusharnogo ishemicheskogo insulta. Vestnik Rossiyskoy voyenno-meditsinskoy akademii. 2012. T. 37. № 1. S. 238–244. (in Russian).
  13. Loginova N.A., Loseva E.V., Kryuchkova A.V., Russu L.I., Mezentseva M.V. Sravnitelnyy analiz pokazateley povedeniya krys v «pripodnyatom krestoobraznom labirinte» pri intranazalnom vvedenii odnosloynykh uglerodnykh nanotrubok v maloy doze v podostrykh opytakh raznoy dlitelnosti. Biomeditsinskaya radioelektronika. 2020. T. 23. № 5. S. 40–46. DOI: https://doi.org/10.18127/j15604136-202005-05 (in Russian).
  14. Milot M.R., Plamondon H. Time-dependent effects of global cerebral ischemia on anxiety, locomotion, and habituation in rats. Behavioural Brain Research. 2009. P. 173–180. DOI: https://doi.org/10.1016/j.bbr.2009.01.009
  15. Loginova N.A., Panov N.V., Potekhina (Prokuratova) A.A., Kositsyn N.S., Svinov M.M. Snizheniye trevozhnosti krys posle ishemii golovnogo mozga i uvelicheniye chisla neyronalnykh shchelevykh kontaktov v oblasti penumbry i ochaga insulta pri vvedenii karbenoksolona. Biomeditsinskaya radioelektronika. 2017. № 2. S. 20–27. (in Russian).
  16. Zhang Q., Zhang J., Yan Y., Zhang P., Zhang W., Xia R. Proinflammatory cytokines correlate with early exercise attenuating anxiety-like behavior after cerebral ischemia. Brain and Behavior. 2017. V. 7. Iss. 11. Article e00854. DOI: https://doi.org/10.1002/brb3.854
  17. Gulyayeva N.V. Molekulyarnyye mekhanizmy deystviya preparatov. soderzhashchikh peptidy mozga: korteksin. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2018. T. 10. S. 93–96. DOI: https://doi.org/10.17116/jnevro201811810193 (in Russian).
  18. Kurkin D.V., Bakulin D.A., Morkovin E.I., Kalatanova A.V., Makarenko I.E., Dorotenko A.R., Kovalev N.S., Dubrovina M.A., Verkholyak D.V., Abrosimova E.E., Smirnov A.V., Shmidt M.V., Tyurenkov I.N. Neuroprotective action of Cortexin, Cerebrolysin and Actovegin in acute or chronic brain ischemia in rats. PLoS ONE. 2021. V. 16(7). Article e0254493. DOI: https://doi.org/10.1371/journal.pone.0254493
  19. Zarubina I.V., Shabanov P.D. Korteksin i kortagen kak korrektory funktsionalno-metabolicheskikh narusheniy golovnogo mozga pri khronicheskoy ishemii. Eksperimentalnaya i klinicheskaya farmakologiya. 2011. T. 74. № 2. S. 8–15. DOI: https://doi.org/10.30906/ 0869-2092-2011-74-2-8-15 (in Russian).
Date of receipt: 12.12.2023
Approved after review: 27.12.2023
Accepted for publication: 23.01.2024