350 rub
Journal Technologies of Living Systems №4 for 2023 г.
Article in number:
Effect of Ginkgo biloba extract and its biologically active substances on lipofuscin accumulation
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700997-202304-12
UDC: 602.4
Authors:

E.R. Faskhutdinova1, I.S. Milentyeva2, A.I. Loseva3, L.K. Asyakina4, E.V. Ostapova5

1-5 Kemerovo State University (Kemerovo, Russia)

1faskhutdinovae.98@mail.ru, 2irazumnikova@mail.ru, 3losevaa@mail.ru, 4alk_kem@mail.ru

Abstract:

In the process of aging, there is a decrease in the physiological functions of the body, and, as a result, the development of various diseases. One of the biomarkers of aging is lipofuscin, resulting from lipid peroxidation by reactive oxygen species. Plant extracts rich in biologically active substances of geroprotective action can prevent this process and reduce the accumulation of lipofuscin. The purpose of this study was to study the effect of the plant extract of the Ginkgo biloba callus culture, as well as individual BAS quercetin and kaempferol, on the accumulation of lipofuscin in the body of Caenorhabditis elegans. To measure the accumulation of lipofuscin, the method of spectrofluorimetric measurement and analysis was chosen. The measurements were carried out on a BMG Clariostar spectrophotometer. The objects of the study were the extract of the G. biloba callus culture in 10-fold, 100-fold, and 1000-fold dilutions, as well as quercetin and kaempferol at concentrations of 10, 50, 100, and 200 μM. During the experiment, it was found that the greatest decrease in the accumulation of lipofuscin was demonstrated by the individual BAS quercetin at a concentration of 100 μM. As a result of the impact of this concentration of quercetin on the organism of nematodes, the difference in accumulation decreased by 2,1 times compared with the control. Treatment of nematodes with kaempferol led to a decrease in the difference in the accumulation of lipofuscin by 91% at 50 µM and by 1,3 times at 200 µM. The extract of G. biloba showed a lower efficiency in reducing lipofuscin compared to individual BAS. At the same time, the highest efficiency was observed in a 10-fold dilution of the extract, which reduced the accumulation of lipofuscin by 1.2 times compared with the control.

Thus, individual biologically active substances of plant origin, in particular, quercetin and kaempferol, isolated from the G. biloba callus culture extract inhibit the accumulation of the aging biomarker, which leads to their use as components of dietary supplements or geroprotective functional foods.

Pages: 121-130
For citation

Faskhutdinova E.R., Milentyeva I.S., Loseva A.I., Asyakina L.K., Ostapova E.V. Effect of Ginkgo biloba extract and its biologically active substances on lipofuscin accumulation. Technologies of Living Systems. 2023. V. 20. № 4. Р. 121-130. DOI: https://doi.org/10.18127/ j20700997-202304-12 (In Russian).

References
  1. Zhang W., Qu J., Liu G.H., Belmonte J.CI. The ageing epigenome and its rejuvenation. Nat. Rev. Mol. Cell Biol. 2020. V. 21(3). P. 137–150. https://doi.org/10.1038/s41580-019-0204-5
  2. Jalilovna K. D., Usmonovna U. M. The Effect of Biologically Active Additives on the Human Body Scholastic. Journal of Natural and Medical Education. 2023. V. 2(6). P 228–232.
  3. Martemucci G., Costagliola C., Mariano M., D’andrea L., Napolitano P., D’Alessandro A.G. Free radical properties, source and targets, antioxidant consumption and health. Oxygen. 2022. V 2(2). P. 48–78. https://doi.org/10.3390/oxygen2020006
  4. Fan X., Fan Z., Yang Z., Huang T., Tong Y., Yang D., Mao X., Yang M. Flavonoids – Natural Gifts to Promote Health and Longevity. International Journal of Molecular Sciences. 2022. V. 23(4). P. 2176. https://doi.org/10.3390/ijms23042176
  5. Moreno-García A., Kun A., Calero O., Medina M., Calero M. An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration. Front. Neurosci. 2018. V. 12. P. 464. https://doi.org/10.3389/fnins.2018.00464
  6. Zhou D., Borsa M., Simon, A.K. Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell. 2021. V. 20(2). P. e13316. https://doi.org/10.1111/acel.13316
  7. Ayuda-Durán B., González-Manzano S., González-Paramás A.M., Santos-Buelga C. Caenorhabditis elegans as a Model Organism to Evaluate the Antioxidant Effects of Phytochemicals. Molecules. 2020. V. 25(14). P. 3194. https://doi.org/10.3390/molecules25143194
  8. Li W.W., Wang H. J., Tan Y.Z., Wang Y.L., Yu S.N., Li Z. H. Reducing lipofuscin accumulation and cardiomyocytic senescence of aging heart by enhancing autophagy. Experimental Cell Research. 2021. V. 403(1). P. 112585. https://doi.org/10.1016/j.yexcr.2021.112585
  9. Singh Kushwaha S., Patro N., Kumar Patro I. A sequential study of age-related lipofuscin accumulation in hippocampus and striate cortex of rats. Annals of Neurosciences. 2019. V. 25(4). P. 223–233.  https://doi.org/10.1159/000490908
  10. Liao V.H.C. Use of Caenorhabditis elegans to study the potential bioactivity of natural compounds. Journal of agricultural and food chemistry. 2018. V. 66(8). P. 1737–1742. https://doi.org/10.1021/acs.jafc.7b05700
  11. Yue Y., Li S., Shen P., Park Y. Caenorhabditis elegans as a model for obesity research. Current Research in Food Science. 2021. V. 4. P. 692–697. https://doi.org/10.1016/j.crfs.2021.09.008
  12. Komura T., Yamanaka M., Nishimura K., Hara K., Nishikawa Y. Autofluorescence as a noninvasive biomarker of senescence and advanced glycation end products in Caenorhabditis elegans. npj Aging and Mechanisms of Disease. 2021. V. 7(1). P. 12. https://doi.org/10.1038/s41514-021-00061-y
  13. Barbalho S.M., Direito R., Laurindo L.F., Marton L.T., Guiguer E.L., Goulart Rd.A, Tofano R.J., Carvalho A.C.A., Flato U.A.P., Capelluppi Tofano V.A., et al. Ginkgo biloba in the Aging Process: A Narrative Review. Antioxidants. 2022. V. 11(3). P. 525. https://doi.org/10.3390/antiox11030525
  14. Singh D. Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease. J. Neuroinflamm. 2022. V. 19. P. 206. https://doi.org/10.1186/s12974-022-02565-0
  15. Pinto M.D.S., Kwon Y.-I., Apostolidis E., Lajolo F.M., Genovese M.I., Shetty K. Potential of Ginkgo biloba L. leaves in the management of hyperglycemia and hypertension using in vitro models. Bioresour. Technol. 2009. V. 100. P. 6599–6609. https://doi.org/10.1016/j.biortech.2009.07.021
  16. Yi H., Peng H., Wu X., Xu X., Kuang T., Zhang J., Du L., Fan G. The therapeutic effects and mechanisms of quercetin on metabolic diseases: pharmacological data and clinical evidence. Oxidative medicine and cellular longevity. 2021. V. 2021. https://doi.org/10.1155/2021/6678662
  17. Tao Y., Zhu F., Pan M., Liu Q., Wang P. Pharmacokinetic, metabolism, and metabolomic strategies provide deep insight into the underlying mechanism of Ginkgo biloba flavonoids in the treatment of cardiovascular disease. Frontiers in Nutrition. 2022. V. 9. P. 857370
  18. Rarinca V., Nicoara M.N., Ureche D., Ciobica A. Exploitation of Quercetin’s Antioxidative Properties in Potential Alternative Therapeutic Options for Neurodegenerative Diseases. Antioxidants. 2023. V. 12(7). P. 1418. https://doi.org/10.3390/antiox12071418
  19. Chen M., Xiao J., El-Seedi H.R., Woźniak K.S., Daglia M., Little P.J., Xu S. Kaempferol and atherosclerosis: From mechanism to medicine. Critical Reviews in Food Science and Nutrition. 2022. P. 1–19. https://doi.org/10.1080/10408398.2022.2121261
  20. Siddique Y. H. Neurodegenerative diseases and flavonoids: special reference to kaempferol. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders). 2021. V. 20(4). P. 327–342. https://doi.org/10.2174/187152732066621012912203
  21. Xiao X., Hu Q., Deng X., Shi K., Zhang W., Jiang Y., Wang X. Old wine in new bottles: Kaempferol is a promising agent for treating the trilogy of liver diseases. Pharmacological Research. 2022. V. 175. P. 106005. https://doi.org/10.1016/j.phrs.2021.106005
  22. Le V., Sukhikh A., Larichev T., Ivanova S., Prosekov A., Dmitrieva A. Isolation of the Main Biologically Active Substances and Phytochemical Analysis of Ginkgo biloba Callus Culture Extracts. Molecules. 2023. V. 28(4). P. 1560. https://doi.org/10.3390/molecules28041560
  23. Kampkötter A., Nkwonkam C. G., Zurawski R. F., Timpel C., Chovolou Y., Wätjen W., Kahl R. Investigations of protective effects of the flavonoids quercetin and rutin on stress resistance in the model organism Caenorhabditis elegans. Toxicology. 2007. V. 234(1-2). P. 113-123. https://doi.org/10.1016/j.tox.2007.02.006
  24. Pietsch K., Saul N., Chakrabarti S. et al. Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans. Biogerontology. 2011. V. 12. P. 329–347. https://doi.org/10.1007/s10522-011-9334-7
  25. Büchter C., Zhao L., Havermann S., Honnen, S., Fritz G., Proksch P., Wätjen W. TSG (2, 3, 5, 4′-tetrahydroxystilbene-2-O-β-D-glucoside) from the Chinese herb polygonum multiflorum increases life span and stress resistance of Caenorhabditis elegans. Oxidative Medicine and Cellular Longevity. 2015. V. 2015. https://doi.org/10.1155/2015/124357
  26. Kampkötter A., Gombitang Nkwonkam C., Zurawski R. F., Timpel C., Chovolou Y., Wätjen W., Kahl R. Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Archives of toxicology. 2007. V. 81. P. 849–858. https://doi.org/10.1007/s00204-007-0215-4
  27. Duangjan C., Rangsinth P., Gu X., Wink M., Tencomnao T. Lifespan extending and oxidative stress resistance properties of a leaf extracts from Anacardium occidentale L. in Caenorhabditis elegans. Oxidative medicine and cellular longevity. 2019. V. 2019. https://doi.org/10.1155/2019/9012396
  28. Jiang S., Deng N., Zheng B., Li T., Liu R. H. Rhodiola extract promotes longevity and stress resistance of Caenorhabditis elegans via DAF-16 and SKN-1. Food & function. 2021. V. 12(10). P. 4471–4483. https://doi.org/10.1039/D0FO02974B
Date of receipt: 08.08.2023
Approved after review: 11.09.2023
Accepted for publication: 20.10.2023