350 rub
Journal Technologies of Living Systems №4 for 2023 г.
Article in number:
Metallothionein – the universal cellular response for damage of the auricle in Acomys cahirinus
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700997-202304-10
UDC: 576.5 + 616-092.9+57.084.1
Authors:

A.I. Bilyalov1, N.S. Filatov2, O.S. Kozlova3, T.A. Voronina4, A.A. Nesmelov5, D.D. Filimoshina6, A.A. Bilyalova7, A.A. Titova8, M.A. Titova9, E.I. Shagimardanova10, O.A. Gusev11, A.P. Kiyasov12

1–12 Kazan (Volga region) federal university (Kazan, Russia)

1 The Loginov Moscow Clinical Scientific Center Under the Health Department of Moscow (Moscow, Russia)

1,11 Graduate School of Medicine, Juntendo University (Tokyo, Japan)

1,11 Endocrinology Research Centre (Moscow, Russia)

1 BilyalovAir@yandex.ru, 2 Ns.filatov@yandex.ru, 3 olga-sphinx@yandex.ru, 4 vorotaisiya@gmail.com, 5 nesmelov@gmail.com, 6 dashuta1312.filimoshina@yandex.ru, 7 alinayakupova96@yandex.ru, 8 anjerika@list.ru, 9 maalti@mail.ru, 10 rjuka@mail.ru, 11 gaijin.ru@gmail.com, 12 kiassov@mail.ru

Abstract:

The ability to regenerate tissue after injury varies greatly across the animal kingdom, with many mammalians cell and tissue repair processes being limited and incomplete. However, there are isolated examples of mammals with exceptional regenerative capabilities, such as mice of the genus Acomys, which have been shown to have increased tissue repair capabilities after injury.

The aim of our study was to identify universal cellular responses to injury by studying the differential expression of auricle genes in Acomys mice and Balb/c mice before and after injury. The auricle, also known as the external ear, is a complex structure composed of various cell types, making it an ideal model for studying tissue repair processes.

We analyzed all cell types of the auricle and determined the differential expression of genes in both groups. We found a statistically significant increase in the expression level of metalloteoneins 1 and 2 genes in all 9 cell types of the Acomys group, except for adipocytes, 6 hours after injury. This increase in genes expression suggests that it may be a possible universal cellular response to damage.

Metallothioneins are small, cysteine-rich proteins that play a vital role in cellular homeostasis by controlling zinc homeostasis and participating in the neutralization of reactive oxygen species. Additionally, metallothioneins can indirectly inhibit the mitochondrial pathway of apoptosis, which is the process of programmed cell death that occurs in response to cellular damage.

The results of this study provide important insights into the molecular mechanisms underlying tissue repair processes and may have practical implications for developing new regenerative therapies. By understanding the universal cellular responses to injury, researchers may be able to develop gene-cell preparations or medical devices that can stimulate the processes of reparative histogenesis after traumatization.

Overall, this study highlights the potential of using animal models to identify universal cellular responses to injury and develop new therapies for tissue repair. The exceptional regenerative capabilities of Acomys mice offer a promising avenue for future research into regenerative medicine.

Pages: 101-111
References
  1. Alibardi L. Perspective: Appendage regeneration in amphibians and some reptiles derived from specific evolutionary histories. Journal of experimental zoology. Part B, Molecular and developmental evolution. 2018. V. 330 (8). P. 396–405. Doi: 10.1002/jez.b.22835
  2. Alibardi L. Regeneration in anamniotes was replaced by regengrow and scarring in amniotes after land colonization and the evolution of terrestrial biological cycles. Dev. Dyn. 2022. V. 251(9). P. 1404–1413. Doi:10.1002/dvdy.341
  3. Arenas-Gómez C.M., Delgado J.P. Limb regeneration in salamanders: the plethodontid tale.. Int. J. Dev. Biol. 2021. V. 65(4). P. 313–321. Doi: 10.1387/ijdb.200228jd
  4. Muneoka K., Allan C.H., Yang X., Lee J., Han M. Mammalian regeneration and regenerative medicine. Birth defects research. Part C, Embryo today: reviews. 2008. V. 84(4). P. 265–280. Doi: 10.1002/bdrc.20137
  5. Maden M., Varholick J.A. Model systems for regeneration: the spiny mouse, Acomys cahirinus. Development. 2020. V. 147(4). P. 130–156. Doi: dev.167718
  6. Jia L., Hua Y., Zeng J., Liu W., Wang D., Zhou G., Liu X., et al. Bioprinting and regeneration of auricular cartilage using a bioactive bioink based on microporous photocrosslinkable acellular cartilage matrix. Bioactive materials. 2022. V. 16. P. 66–81. Doi: 10.1016/j.bioactmat.2022.02.032
  7. Bilyalov A.I., Filimoshina D.D., Filatov N.S., Bilyalova A.A., Titova A.A., Gataullinna L.R., Plyushkina A.S., Shagimardanova E.I., Deyev R.V., Kiyasov A.P., Kozlova O.S., Nesmelov A.A., Gusev O.A. U myshey roda Acomys posle travmy vosstanavlivayetsya elasticheskiy khryashch ushnoy rakoviny. Geny i Kletki. 2022. T. 17. № 1. S. 42–47. Doi: 10.23868/202205003 (in Russian).
  8. Thirumoorthy N., Manisenthil Kumar K.T., Shyam Sundar A., Panayappan L., Chatterjee M. Metallothionein: an overview. World. J. Gastroenterol. 2007. V. 13(7). P. 993–996. Doi: 10.3748/wjg.v13.i7.993
  9. Kavitha S.V., George S.D. Metallothioneins: Emerging Modulators in Immunity and Infection. Int. J. Mol. Sci. 2017. V. 18(10). P. 2197. Doi: 10.3390/ijms18102197
  10. Moleirinho A., Carneiro J., Matthiesen R., Silva R.M., Amorim A. Gains, Losses and Changes of Function after Gene Duplication: Study of the Metallothionein Family. PLOS ONE. 2020. V. 6(4). P. 18487. Doi: 10.1371/journal.pone.0018487
  11. Ruttkay-Nedecky B., Nejdl L., Gumulec J., Zitka O., Masarik M., Eckschlager T., Stiborova M., et al. The role of metallothionein in oxidative stress. Int. J. Mol. Sci. 2013. V. 14(3). P. 6044–6066. Doi: 10.3390/ijms14036044
  12. Wei H., Desouki M.M., Lin S., Xiao D., Franklin R.B., Feng P. Differential expression of metallothioneins (MTs) 1, 2, and 3 in response to zinc treatment in human prostate normal and malignant cells and tissues. Mol. Cancer. 2008. V. 7. P. 7. Doi: 10.1186/1476-4598-7-7
  13. Vasák M., Hasler D.W. Metallothioneins: new functional and structural insights. Curr. Opin. Chem. Biol. 2000. V. 4(2). P.177–183. Doi: 10.1016/s1367-5931(00)00082-x
  14. Braun W., Vasák M., Robbins A.H., Stout C.D., Wagner G., Kägi J.H., Wüthrich K. Comparison of the NMR solution structure and the x-ray crystal structure of rat metallothionein-2. Proc. Natl. Acad. Sci. U S A. 1992. V. 89(21). P. 10124–10128. Doi: 10.1073/pnas.89.21.10124
  15. Chen S.H., Chen L., Russell D.H. Metal-induced conformational changes of human metallothionein-2A: a combined theoretical and experimental study of metal-free and partially metalated intermediates. J. Am. Chem. Soc. 2014. V. 136(26). P. 9499–9508. Doi: 10.1021/ja5047878
  16. Irvine G.W., Duncan K.E., Gullons M., Stillman M.J. Metalation kinetics of the human α-metallothionein 1a fragment is dependent on the fluxional structure of the apo-protein. Chemistry. 2015. V. 21(3). P. 1269–1279. Doi: 10.1002/chem.201404283
  17. Banerjee D., Onosaka S., Cherian M.G. Immunohistochemical localization of metallothionein in cell nucleus and cytoplasm of rat liver and kidney. Toxicology. 1982. V. 24(2). P. 95–105. Doi: 10.1016/0300-483x(82)90048-8
  18. Lee S.J., Park M.H., Kim H.J., Koh J.Y. Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions. Glia. 2010. V. 58(10). P. 1186–1196. Doi: 10.1002/glia.20998
  19. Müller J. Functional metal ions in nucleic acids. Metallomics. 2010. V. 2(5). P. 318–327. Doi: 10.1039/c000429d
  20. Gumulec J., Masarik M., Krizkova S., Adam V., Hubalek J., Hrabeta J., Eckschlager T., et al. Insight to physiology and pathology of zinc (II) ions and their actions in breast and prostate carcinoma. Curr. Med. Chem. 2011. V. 18(33). P. 5041–5051. Doi: 10.2174/092986711797636126
  21. Yushchuk O., Ostash B., Pham T.H., Luzhetskyy A., Fedorenko V., Truman A.W., Horbal L. Characterization of the Post-Assembly Line Tailoring Processes in Teicoplanin Biosynthesis. ACS. Chem. Biol. 2016. V. 11(8). P. 2254–2264. Doi: 10.1021/acschembio.6b00018
  22. Bock F.J., Riley J.S. When cell death goes wrong: inflammatory outcomes of failed apoptosis and mitotic cell death. Cell Death Differ. 2023. V. 30. P. 293–303 Doi: 10.1038/s41418-022-01082-0
  23. Ruttkay-Nedecky B., Nejdl L., Gumulec J., Zitka O., Masarik M., Eckschlager T., Stiborova M., et al. The Role of Metallothionein in Oxidative Stress. Int. J. Mol. Sci. 2013. V.14. P. 6044–6066. Doi: 10.3390/ijms14036044
  24. Proskurnina E.V., Fedorova M.V., Okhobotov D.A., Kamalov A.A. Vnutrikletochnyy gomeostaz aktivnykh form kisloroda spermatozoidov: opyt primeneniya khemilyuminestsentsii. Tekhnologii zhivykh sistem. 2022. T. 19. № 1. S. 38–44. Doi: 10.18127/j20700997-202201-05 (in Russian).
  25. Mittal M., Siddiqui M.R., Tran K., Reddy S.P., Malik A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014. V. 20(7). P. 1126–1167. Doi: 10.1089/ars.2012.5149
  26. Larina I.M. Markery oksidativnogo stressa v zhidkostyakh tela kosmonavtov posle prodolzhitelnykh kosmicheskikh poletov na MKS. Tekhnologii zhivykh sistem. 2019. T. 16. № 5. S. 5–16. Doi: 10.18127/j20700997-201905-01 (in Russian).
  27. Liu R.M., Desai L.P. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol. 2015. V. 6. P. 565–577. Doi: 10.1016/j.redox.2015.09.009
  28. Xu G., Fan L., Zhao S., OuYang C. MT1G inhibits the growth and epithelial-mesenchymal transition of gastric cancer cells by regulating the PI3K/AKT signaling pathway. Genet. Mol. Biol. 2022. V. 45(1). P. 20210067. Doi: 10.1590/1678-4685-GMB-2021-0067
Date of receipt: 11.05.2023
Approved after review: 05.06.2023
Accepted for publication: 20.10.2023