A.I. Bilyalov1, N.S. Filatov2, O.S. Kozlova3, T.A. Voronina4, A.A. Nesmelov5, D.D. Filimoshina6, A.A. Bilyalova7, A.A. Titova8, M.A. Titova9, E.I. Shagimardanova10, O.A. Gusev11, A.P. Kiyasov12
1–12 Kazan (Volga region) federal university (Kazan, Russia)
1 The Loginov Moscow Clinical Scientific Center Under the Health Department of Moscow (Moscow, Russia)
1,11 Graduate School of Medicine, Juntendo University (Tokyo, Japan)
1,11 Endocrinology Research Centre (Moscow, Russia)
1 BilyalovAir@yandex.ru, 2 Ns.filatov@yandex.ru, 3 olga-sphinx@yandex.ru, 4 vorotaisiya@gmail.com, 5 nesmelov@gmail.com, 6 dashuta1312.filimoshina@yandex.ru, 7 alinayakupova96@yandex.ru, 8 anjerika@list.ru, 9 maalti@mail.ru, 10 rjuka@mail.ru, 11 gaijin.ru@gmail.com, 12 kiassov@mail.ru
The ability to regenerate tissue after injury varies greatly across the animal kingdom, with many mammalians cell and tissue repair processes being limited and incomplete. However, there are isolated examples of mammals with exceptional regenerative capabilities, such as mice of the genus Acomys, which have been shown to have increased tissue repair capabilities after injury.
The aim of our study was to identify universal cellular responses to injury by studying the differential expression of auricle genes in Acomys mice and Balb/c mice before and after injury. The auricle, also known as the external ear, is a complex structure composed of various cell types, making it an ideal model for studying tissue repair processes.
We analyzed all cell types of the auricle and determined the differential expression of genes in both groups. We found a statistically significant increase in the expression level of metalloteoneins 1 and 2 genes in all 9 cell types of the Acomys group, except for adipocytes, 6 hours after injury. This increase in genes expression suggests that it may be a possible universal cellular response to damage.
Metallothioneins are small, cysteine-rich proteins that play a vital role in cellular homeostasis by controlling zinc homeostasis and participating in the neutralization of reactive oxygen species. Additionally, metallothioneins can indirectly inhibit the mitochondrial pathway of apoptosis, which is the process of programmed cell death that occurs in response to cellular damage.
The results of this study provide important insights into the molecular mechanisms underlying tissue repair processes and may have practical implications for developing new regenerative therapies. By understanding the universal cellular responses to injury, researchers may be able to develop gene-cell preparations or medical devices that can stimulate the processes of reparative histogenesis after traumatization.
Overall, this study highlights the potential of using animal models to identify universal cellular responses to injury and develop new therapies for tissue repair. The exceptional regenerative capabilities of Acomys mice offer a promising avenue for future research into regenerative medicine.
- Alibardi L. Perspective: Appendage regeneration in amphibians and some reptiles derived from specific evolutionary histories. Journal of experimental zoology. Part B, Molecular and developmental evolution. 2018. V. 330 (8). P. 396–405. Doi: 10.1002/jez.b.22835
- Alibardi L. Regeneration in anamniotes was replaced by regengrow and scarring in amniotes after land colonization and the evolution of terrestrial biological cycles. Dev. Dyn. 2022. V. 251(9). P. 1404–1413. Doi:10.1002/dvdy.341
- Arenas-Gómez C.M., Delgado J.P. Limb regeneration in salamanders: the plethodontid tale.. Int. J. Dev. Biol. 2021. V. 65(4). P. 313–321. Doi: 10.1387/ijdb.200228jd
- Muneoka K., Allan C.H., Yang X., Lee J., Han M. Mammalian regeneration and regenerative medicine. Birth defects research. Part C, Embryo today: reviews. 2008. V. 84(4). P. 265–280. Doi: 10.1002/bdrc.20137
- Maden M., Varholick J.A. Model systems for regeneration: the spiny mouse, Acomys cahirinus. Development. 2020. V. 147(4). P. 130–156. Doi: dev.167718
- Jia L., Hua Y., Zeng J., Liu W., Wang D., Zhou G., Liu X., et al. Bioprinting and regeneration of auricular cartilage using a bioactive bioink based on microporous photocrosslinkable acellular cartilage matrix. Bioactive materials. 2022. V. 16. P. 66–81. Doi: 10.1016/j.bioactmat.2022.02.032
- Bilyalov A.I., Filimoshina D.D., Filatov N.S., Bilyalova A.A., Titova A.A., Gataullinna L.R., Plyushkina A.S., Shagimardanova E.I., Deyev R.V., Kiyasov A.P., Kozlova O.S., Nesmelov A.A., Gusev O.A. U myshey roda Acomys posle travmy vosstanavlivayetsya elasticheskiy khryashch ushnoy rakoviny. Geny i Kletki. 2022. T. 17. № 1. S. 42–47. Doi: 10.23868/202205003 (in Russian).
- Thirumoorthy N., Manisenthil Kumar K.T., Shyam Sundar A., Panayappan L., Chatterjee M. Metallothionein: an overview. World. J. Gastroenterol. 2007. V. 13(7). P. 993–996. Doi: 10.3748/wjg.v13.i7.993
- Kavitha S.V., George S.D. Metallothioneins: Emerging Modulators in Immunity and Infection. Int. J. Mol. Sci. 2017. V. 18(10). P. 2197. Doi: 10.3390/ijms18102197
- Moleirinho A., Carneiro J., Matthiesen R., Silva R.M., Amorim A. Gains, Losses and Changes of Function after Gene Duplication: Study of the Metallothionein Family. PLOS ONE. 2020. V. 6(4). P. 18487. Doi: 10.1371/journal.pone.0018487
- Ruttkay-Nedecky B., Nejdl L., Gumulec J., Zitka O., Masarik M., Eckschlager T., Stiborova M., et al. The role of metallothionein in oxidative stress. Int. J. Mol. Sci. 2013. V. 14(3). P. 6044–6066. Doi: 10.3390/ijms14036044
- Wei H., Desouki M.M., Lin S., Xiao D., Franklin R.B., Feng P. Differential expression of metallothioneins (MTs) 1, 2, and 3 in response to zinc treatment in human prostate normal and malignant cells and tissues. Mol. Cancer. 2008. V. 7. P. 7. Doi: 10.1186/1476-4598-7-7
- Vasák M., Hasler D.W. Metallothioneins: new functional and structural insights. Curr. Opin. Chem. Biol. 2000. V. 4(2). P.177–183. Doi: 10.1016/s1367-5931(00)00082-x
- Braun W., Vasák M., Robbins A.H., Stout C.D., Wagner G., Kägi J.H., Wüthrich K. Comparison of the NMR solution structure and the x-ray crystal structure of rat metallothionein-2. Proc. Natl. Acad. Sci. U S A. 1992. V. 89(21). P. 10124–10128. Doi: 10.1073/pnas.89.21.10124
- Chen S.H., Chen L., Russell D.H. Metal-induced conformational changes of human metallothionein-2A: a combined theoretical and experimental study of metal-free and partially metalated intermediates. J. Am. Chem. Soc. 2014. V. 136(26). P. 9499–9508. Doi: 10.1021/ja5047878
- Irvine G.W., Duncan K.E., Gullons M., Stillman M.J. Metalation kinetics of the human α-metallothionein 1a fragment is dependent on the fluxional structure of the apo-protein. Chemistry. 2015. V. 21(3). P. 1269–1279. Doi: 10.1002/chem.201404283
- Banerjee D., Onosaka S., Cherian M.G. Immunohistochemical localization of metallothionein in cell nucleus and cytoplasm of rat liver and kidney. Toxicology. 1982. V. 24(2). P. 95–105. Doi: 10.1016/0300-483x(82)90048-8
- Lee S.J., Park M.H., Kim H.J., Koh J.Y. Metallothionein-3 regulates lysosomal function in cultured astrocytes under both normal and oxidative conditions. Glia. 2010. V. 58(10). P. 1186–1196. Doi: 10.1002/glia.20998
- Müller J. Functional metal ions in nucleic acids. Metallomics. 2010. V. 2(5). P. 318–327. Doi: 10.1039/c000429d
- Gumulec J., Masarik M., Krizkova S., Adam V., Hubalek J., Hrabeta J., Eckschlager T., et al. Insight to physiology and pathology of zinc (II) ions and their actions in breast and prostate carcinoma. Curr. Med. Chem. 2011. V. 18(33). P. 5041–5051. Doi: 10.2174/092986711797636126
- Yushchuk O., Ostash B., Pham T.H., Luzhetskyy A., Fedorenko V., Truman A.W., Horbal L. Characterization of the Post-Assembly Line Tailoring Processes in Teicoplanin Biosynthesis. ACS. Chem. Biol. 2016. V. 11(8). P. 2254–2264. Doi: 10.1021/acschembio.6b00018
- Bock F.J., Riley J.S. When cell death goes wrong: inflammatory outcomes of failed apoptosis and mitotic cell death. Cell Death Differ. 2023. V. 30. P. 293–303 Doi: 10.1038/s41418-022-01082-0
- Ruttkay-Nedecky B., Nejdl L., Gumulec J., Zitka O., Masarik M., Eckschlager T., Stiborova M., et al. The Role of Metallothionein in Oxidative Stress. Int. J. Mol. Sci. 2013. V.14. P. 6044–6066. Doi: 10.3390/ijms14036044
- Proskurnina E.V., Fedorova M.V., Okhobotov D.A., Kamalov A.A. Vnutrikletochnyy gomeostaz aktivnykh form kisloroda spermatozoidov: opyt primeneniya khemilyuminestsentsii. Tekhnologii zhivykh sistem. 2022. T. 19. № 1. S. 38–44. Doi: 10.18127/j20700997-202201-05 (in Russian).
- Mittal M., Siddiqui M.R., Tran K., Reddy S.P., Malik A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 2014. V. 20(7). P. 1126–1167. Doi: 10.1089/ars.2012.5149
- Larina I.M. Markery oksidativnogo stressa v zhidkostyakh tela kosmonavtov posle prodolzhitelnykh kosmicheskikh poletov na MKS. Tekhnologii zhivykh sistem. 2019. T. 16. № 5. S. 5–16. Doi: 10.18127/j20700997-201905-01 (in Russian).
- Liu R.M., Desai L.P. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol. 2015. V. 6. P. 565–577. Doi: 10.1016/j.redox.2015.09.009
- Xu G., Fan L., Zhao S., OuYang C. MT1G inhibits the growth and epithelial-mesenchymal transition of gastric cancer cells by regulating the PI3K/AKT signaling pathway. Genet. Mol. Biol. 2022. V. 45(1). P. 20210067. Doi: 10.1590/1678-4685-GMB-2021-0067