R. Schwab1, N. Salim2, A.N. Danilov3, K.O. Tumanova4, A.V. Chjao5, P.V. Koposov6
1 MIND Brain-gut Center (Budapest, Hungary)
2–6 European Medical Center (Moscow, Russia)
2 Russian Medical Academy of Continuous Professional Education (Moscow, Russia)
3 ASTRA-77 LLC (Moscow, Russia)
In the recent decade, there has been a remarkable breakthrough in the microbiome research in regards to different diseases including cancer. Dysbiosis and cancer interconnection mechanisms are of great scientific and applied interest. This is particularly true for colorectal cancer development possessing a serious threat to the modern healthcare.
The study purpose is a review of the potential pathological molecular mechanisms involving microbiome in cancer development including inflammation, intestinal barrier damage and signal transduction interference – all of these instances play a prominent clinical role and may become the therapeutic targets.
The article discusses the impact of microbiome shifts on the molecular pathology of colorectal cancer in the light of the CMS classification. In future, this knowledge may lead to imply immune and target therapy more precisely for the increasing number of patients suffering from colorectal cancer. It will also help to maintain interventions achieving the purposes of primary, secondary and tertiary prevention measures for colorectal cancer.
Schwab R., Salim N., Danilov A.N., Tumanova K.O., Chjao A.V., Koposov P.V. The role of the microbiome in colorectal cancer development. Technologies of Living Systems. 2023. V. 20. № 3. Р. 25-35. DOI: https://doi.org/10.18127/j20700997-202303-04
(In Russian).
- Pearson-Stuttard J., Papadimitriou N., Markozannes G. et al. Type 2 Diabetes and Cancer: An Umbrella Review of Observational and Mendelian Randomization Studies. Cancer Epidemiol. Biomarkers Prev. 2021. V. 30. № 6. P. 1218–1228. Doi: 10.1158/1055-9965.EPI-20-1245
- Banks E., Joshy G., Weber M.F. et al. Tobacco smoking and all-cause mortality in a large Australian cohort study: findings from a mature epidemic with current low smoking prevalence. BMC Med. 2015. V. 24. № 2. P. 13–38. Doi: 10.1186/s12916-015-0281-z
- Gourd K. ESMO World Congress on Gastrointestinal Cancer 2022. Lancet Oncol. 2022. V. 23. № 8. P. 988. Doi: 10.1016/S1470-2045(22)00443-0
- Guinney J., Dienstmann R., Wang X. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015. V. 21. № 11. P. 1350–1356. Doi: 10.1038/nm.3967
- Picard E., Verschoor C.P., Ma G.W., Pawelec G. Relationships between immune landscapes, Genetic Subtypes and Responses to Immunotherapy in Colorectal Cancer. Front. Immunol. 2020. V. 6. № 3. P. 369. Doi: 10.3389/fimmu.2020.00369
- Llosa N.J., Cruise M., Tam A. et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015. № 5. P. 43–51.
- Pagès F., Mlecnik B., Marliot F. et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet. 2018. V. 391. P. 2128–2139. Doi:10.1016/S0140-6736(18)30789-X
- Purcell R.V., Visnovska M., Biggs P.J., Schmeier S., Frizelle F.A. Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Sci. Rep. 2017. V. 7. № 12. P. e11590. Doi: 10.1038/s41598-017-11237-6
- Salvucci M., Crawford N., Stott K. et al. Patients with mesenchymal tumours and high Fusobacteriales prevalence have worse prognosis in colorectal cancer (CRC). Gut. 2022. V. 71. № 8. P. 1600–1612. Doi: 10.1136/gutjnl-2021-325193
- Dinarvand P., Davaro E.P., Doan J.V. et al. Familial adenomatous polyposis syndrome: an update and review of extraintestinal manifestations. Arch. Pathol. Lab. Med. 2019. V. 143. № 11. P. 1382–1398. Doi: 10.5858/arpa.2018-0570-RA
- Dejea C.M., Fathi P., Craig J.M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018. V. 359. № 6375. P. 592–597. Doi: 10.1126/science.aah3648
- Chung L., Thiele Orberg E., Geis A.L. et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe. 2018. V. 23. № 2. P. 203–214. Doi: 10.1016/j.chom.2018.01.007
- Clay S.L., Fonseca-Pereira D., Garrett W.S. Colorectal cancer: the facts in the case of the microbiota. J. Clin. Invest. 2022. V. 132. № 4. P. e155101. Doi: 10.1172/JCI155101
- Brembeck FH, Rosário M, Birchmeier W. Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Curr. Opin. Genet. Dev. 2006. V. 16. № 1. P. 51–59. Doi: 10.1016/j.gde.2005.12.007
- Silva-García O., Valdez-Alarcón J.J., Baizabal-Aguirre V.M. Wnt/β-Catenin signaling as a molecular target by pathogenic bacteria. Front Immunol. 2019. № 10. P. 2135. Doi: 10.3389/fimmu.2019.02135
- Pagès F., Kirilovsky A., Mlecnik B. et al. In situ cytotoxic and memory T cells predict outcome in patients with earlystage colorectal cancer. J. Clin. Oncol. 2009. V. 27. № 35. P. 5944–5951. Doi: 10.1200/JCO.2008.19.6147
- Xing J., Liao Y., Zhang H. et al. Impacts of MicroRNAs induced by the gut microbiome on regulating the development of colorectal cancer. Front. Cell. Infect. Microbiol. 2022. V. 12. P. e804689. Doi: 10.3389/fcimb.2022.804689
- Ying H., Kimmelman A.C., Lyssiotis C.A. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012. V. 149. № 3. P. 656–670. Doi: 10.1016/j.cell.2012.01.058
- Antón M., Rodríguez-González A., Ballesta A. et al. Alcohol binge disrupts the rat intestinal barrier: the partial protective role of oleoylethanolamide. Br. J. Pharmacol. 2018. V. 175. № 24. P. 4464–4479. Doi: 10.1111/bph.14501
- Bagnardi V., Rota M., Botteri E. et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br. J. Cancer. 2015. V. 112. № 3. P. 580–593. Doi: 10.1038/bjc.2014.579
- Yang C.S., Chen X., Tu S. Etiology and prevention of esophageal cancer. Gastrointest Tumors. 2016. V. 3. № 1. P. 3–16. Doi: 10.1159/000443155
- Galeone C., Pelucchi C., Talamini R. et al. Role of fried foods and oral/pharyngeal and oesophageal cancers. Br. J. Cancer. 2005. V. 92. № 11. P. 2065–2069. Doi: 10.1038/sj.bjc.6602542
- Bernardazzi C., Pêgo B., de Souza H.S. Neuroimmunomodulation in the gut: focus on inflammatory bowel disease. Mediators Inflamm. 2016. V. 2016. P. e1363818. Doi: 10.1155/2016/1363818
- Scherzad A., Hagen R., Hackenberg S. Current understanding of nasal epithelial cell mis-differentiation. J. Inflamm. Res. 2019. V. 2019. № 12. P. 309–317. Doi: 10.2147/JIR.S180853
- Turchina M.S., Karaseva Z.V. Sindrom nizkoy rezistentnosti k gistaminu: prichina ili sledstvie patologii ZhKT? Eksperimental’naya i klinicheskaya gastroenterologiya. 2020. № 7. S. 152–157. Doi: 10.31146/1682-8658-ecg-179-7-152-157 (in Russian).
- Yan Y., Kolachala V., Dalmasso G. et al. Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis. PLoS One. 2009. V. 4. № 6. P. e6073. Doi: 10.1371/journal.pone.0006073
- Cercek A., Lumish M., Sinopoli J. et al. PD-L1 blockade in mismatch repair–deficient, locally advanced rectal cancer. N. Engl. J. Med. 2022. V. 386. № 25. P. 2363–2376. Doi: 10.1056/NEJMoa2201445