350 rub
Journal Technologies of Living Systems №3 for 2023 г.
Article in number:
The role of the microbiome in colorectal cancer development
Type of article: overview article
DOI: https://doi.org/10.18127/j20700997-202303-04
UDC: 616.34-006.6-076+579.22
Authors:

R. Schwab1, N. Salim2, A.N. Danilov3, K.O. Tumanova4, A.V. Chjao5, P.V. Koposov6

1 MIND Brain-gut Center (Budapest, Hungary)

2–6 European Medical Center (Moscow, Russia)

2 Russian Medical Academy of Continuous Professional Education (Moscow, Russia)

3 ASTRA-77 LLC (Moscow, Russia)

Abstract:

In the recent decade, there has been a remarkable breakthrough in the microbiome research in regards to different diseases including cancer. Dysbiosis and cancer interconnection mechanisms are of great scientific and applied interest. This is particularly true for colorectal cancer development possessing a serious threat to the modern healthcare.

The study purpose is a review of the potential pathological molecular mechanisms involving microbiome in cancer development including inflammation, intestinal barrier damage and signal transduction interference – all of these instances play a prominent clinical role and may become the therapeutic targets.

The article discusses the impact of microbiome shifts on the molecular pathology of colorectal cancer in the light of the CMS classification. In future, this knowledge may lead to imply immune and target therapy more precisely for the increasing number of patients suffering from colorectal cancer. It will also help to maintain interventions achieving the purposes of primary, secondary and tertiary prevention measures for colorectal cancer.

Pages: 25-35
For citation

Schwab R., Salim N., Danilov A.N., Tumanova K.O., Chjao A.V., Koposov P.V. The role of the microbiome in colorectal cancer development. Technologies of Living Systems. 2023. V. 20. № 3. Р. 25-35. DOI: https://doi.org/10.18127/j20700997-202303-04
(In Russian).

References
  1. Pearson-Stuttard J., Papadimitriou N., Markozannes G. et al. Type 2 Diabetes and Cancer: An Umbrella Review of Observational and Mendelian Randomization Studies. Cancer Epidemiol. Biomarkers Prev. 2021. V. 30. № 6. P. 1218–1228. Doi: 10.1158/1055-9965.EPI-20-1245
  2. Banks E., Joshy G., Weber M.F. et al. Tobacco smoking and all-cause mortality in a large Australian cohort study: findings from a mature epidemic with current low smoking prevalence. BMC Med. 2015. V. 24. № 2. P. 13–38. Doi: 10.1186/s12916-015-0281-z
  3. Gourd K. ESMO World Congress on Gastrointestinal Cancer 2022. Lancet Oncol. 2022. V. 23. № 8. P. 988. Doi: 10.1016/S1470-2045(22)00443-0
  4. Guinney J., Dienstmann R., Wang X. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015. V. 21. № 11. P. 1350–1356. Doi: 10.1038/nm.3967
  5. Picard E., Verschoor C.P., Ma G.W., Pawelec G. Relationships between immune landscapes, Genetic Subtypes and Responses to Immunotherapy in Colorectal Cancer. Front. Immunol. 2020. V. 6. № 3. P. 369. Doi: 10.3389/fimmu.2020.00369
  6. Llosa N.J., Cruise M., Tam A. et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov. 2015. № 5. P. 43–51.
  7. Pagès F., Mlecnik B., Marliot F. et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study. Lancet. 2018. V. 391. P. 2128–2139. Doi:10.1016/S0140-6736(18)30789-X
  8. Purcell R.V., Visnovska M., Biggs P.J., Schmeier S., Frizelle F.A. Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Sci. Rep. 2017. V. 7. № 12. P. e11590. Doi: 10.1038/s41598-017-11237-6
  9. Salvucci M., Crawford N., Stott K. et al. Patients with mesenchymal tumours and high Fusobacteriales prevalence have worse prognosis in colorectal cancer (CRC). Gut. 2022. V. 71. № 8. P. 1600–1612. Doi: 10.1136/gutjnl-2021-325193
  10. Dinarvand P., Davaro E.P., Doan J.V. et al. Familial adenomatous polyposis syndrome: an update and review of extraintestinal manifestations. Arch. Pathol. Lab. Med. 2019. V. 143. № 11. P. 1382–1398. Doi: 10.5858/arpa.2018-0570-RA
  11. Dejea C.M., Fathi P., Craig J.M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018. V. 359. № 6375. P. 592–597. Doi: 10.1126/science.aah3648
  12. Chung L., Thiele Orberg E., Geis A.L. et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe. 2018. V. 23. № 2. P. 203–214. Doi: 10.1016/j.chom.2018.01.007
  13. Clay S.L., Fonseca-Pereira D., Garrett W.S. Colorectal cancer: the facts in the case of the microbiota. J. Clin. Invest. 2022. V. 132. № 4. P. e155101. Doi: 10.1172/JCI155101
  14. Brembeck FH, Rosário M, Birchmeier W. Balancing cell adhesion and Wnt signaling, the key role of beta-catenin. Curr. Opin. Genet. Dev. 2006. V. 16. № 1. P. 51–59. Doi: 10.1016/j.gde.2005.12.007
  15. Silva-García O., Valdez-Alarcón J.J., Baizabal-Aguirre V.M. Wnt/β-Catenin signaling as a molecular target by pathogenic bacteria. Front Immunol. 2019. № 10. P. 2135. Doi: 10.3389/fimmu.2019.02135
  16. Pagès F., Kirilovsky A., Mlecnik B. et al. In situ cytotoxic and memory T cells predict outcome in patients with earlystage colorectal cancer. J. Clin. Oncol. 2009. V. 27. № 35. P. 5944–5951. Doi: 10.1200/JCO.2008.19.6147
  17. Xing J., Liao Y., Zhang H. et al. Impacts of MicroRNAs induced by the gut microbiome on regulating the development of colorectal cancer. Front. Cell. Infect. Microbiol. 2022. V. 12. P. e804689. Doi: 10.3389/fcimb.2022.804689
  18. Ying H., Kimmelman A.C., Lyssiotis C.A. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell. 2012. V. 149. № 3. P. 656–670. Doi: 10.1016/j.cell.2012.01.058
  19. Antón M., Rodríguez-González A., Ballesta A. et al. Alcohol binge disrupts the rat intestinal barrier: the partial protective role of oleoylethanolamide. Br. J. Pharmacol. 2018. V. 175. № 24. P. 4464–4479. Doi: 10.1111/bph.14501
  20. Bagnardi V., Rota M., Botteri E. et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response meta-analysis. Br. J. Cancer. 2015. V. 112. № 3. P. 580–593. Doi: 10.1038/bjc.2014.579
  21. Yang C.S., Chen X., Tu S. Etiology and prevention of esophageal cancer. Gastrointest Tumors. 2016. V. 3. № 1. P. 3–16. Doi: 10.1159/000443155
  22. Galeone C., Pelucchi C., Talamini R. et al. Role of fried foods and oral/pharyngeal and oesophageal cancers. Br. J. Cancer. 2005. V. 92. № 11. P. 2065–2069. Doi: 10.1038/sj.bjc.6602542
  23. Bernardazzi C., Pêgo B., de Souza H.S. Neuroimmunomodulation in the gut: focus on inflammatory bowel disease. Mediators Inflamm. 2016. V. 2016. P. e1363818. Doi: 10.1155/2016/1363818
  24. Scherzad A., Hagen R., Hackenberg S. Current understanding of nasal epithelial cell mis-differentiation. J. Inflamm. Res. 2019. V. 2019. № 12. P. 309–317. Doi: 10.2147/JIR.S180853
  25. Turchina M.S., Karaseva Z.V. Sindrom nizkoy rezistentnosti k gistaminu: prichina ili sledstvie patologii ZhKT? Eksperimental’naya i klinicheskaya gastroenterologiya. 2020. № 7. S. 152–157. Doi: 10.31146/1682-8658-ecg-179-7-152-157 (in Russian).
  26. Yan Y., Kolachala V., Dalmasso G. et al. Temporal and spatial analysis of clinical and molecular parameters in dextran sodium sulfate induced colitis. PLoS One. 2009. V. 4. № 6. P. e6073. Doi: 10.1371/journal.pone.0006073
  27. Cercek A., Lumish M., Sinopoli J. et al. PD-L1 blockade in mismatch repair–deficient, locally advanced rectal cancer. N. Engl. J. Med. 2022. V. 386. № 25. P. 2363–2376. Doi: 10.1056/NEJMoa2201445
Date of receipt: 20.06.2023
Approved after review: 07.07.2023
Accepted for publication: 01.08.2023