350 rub
Journal Technologies of Living Systems №2 for 2023 г.
Article in number:
Galectins: characteristics, role in pathogenesis, clinical course and prognosis of diseases
Type of article: overview article
DOI: https://doi.org/10.18127/j20700997-202302-01
UDC: 616-006-037-074-092:577.112:577.21
Authors:

N.N. Zybina1, O.V. Tikhomirova2, E.A. Kulikova3, P.L. Prischep4, N.E. Kushlinskii5

1–3 Nikiforov Russian Center of Emergency and Radiation Medicine, EMERCOM of Russia (Saint-Petersburg, Russia)

4,5 N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia (Moscow, Russia)

Abstract:

Recent studies demonstrate the potential of galectins as biomarkers of pathological processes. Of greatest interest in this regard is galectin-3, whose high levels are associated with the development of fibrosis in chronic heart failure and, presumably, can be used to stratify the risk of patients with myocardial infarction. At the same time, many effects of galectins remain unexplored and require systematic analysis.

The purpose of this work is to analyze the data of modern literature on the role of galectins of various classes in the implementation of the fundamental mechanisms of cellular functions and intercellular interactions in various pathological conditions and diseases.

The review presents data on the structure and classification of the family of galactoside-binding proteins - galectins, their role in activation, secretion of cytokines, cell migration, proliferation and apoptosis, as well as in interaction with the extracellular matrix. The diverse functions of galectins, which cause the interest of researchers in revealing the role of galectins in the pathogenesis of various diseases and pathological conditions, are considered. Identification of specific mechanisms of involvement of galectins in the pathogenesis of diseases, determination of their diagnostic and prognostic significance can become the basis for their use as biomarkers of pathological processes and targets for therapeutic intervention.

Pages: 5-17
For citation

Zybina N.N., Tikhomirova O.V., Kulikova E.A., Prischep P.L., Kushlinskii N.E. Galectins: characteristics, role in pathogenesis, clinical course and prognosis of diseases. Technologies of Living Systems. 2023. V. 20. № 2. Р. 5-17. DOI: https://doi.org/10.18127/j20700997-202302-01 (In Russian)

References
  1. Leffler H. Galectin history, some stories, and some outstanding questions. Trends Glycosci. Glycotechnol. 2018. V. 30. № 172. P. SE129–SE135. DOI: 10.4052/tigg.1724.1SE.
  2. Cummings R.D., Liu F.T. Galectins. Essential of glycobiology, second ed. 2009
  3. van der Hoeven N.W., Hollander M.R., Yıldırımb C., et al. The emerging role of galectins in cardiovascular disease. Vascular Pharmacology. 2016. V. 81. P. 31-41. https://DOI.org/10.1016/j.vph.2016.02.006.
  4. Hsieh S.H., Ying N.W., Wu M.H., et al. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene. 2008. V. 27. № 26. P. 3746–3753. DOI: 10.1038/sj.onc.1211029
  5. Thijssen V.L., Hulsmans S., Griffioen A.W. The Galectin Profile of the Endothelium: Altered Expression and Localization in Activated and Tumor Endothelial Cells. Am. J. Pathol. 2008. V.172. № 2. P. 545–553. DOI: 10.2353/ajpath.2008.070938
  6. Chellan B., Narayani J., Appukuttan P.S. Galectin-1, an endogenous lectin produced by arterial cells, binds lipoprotein(a) [Lp(a)] in situ: Relevance to atherogenesis. Exp. Mol. Pathol. 2007. V. 83. № 3. P. 399-404. DOI: 10.1016/j.yexmp.2007.04.004
  7. Sano H., Hsu L., Yu J.R., et al. Human Galectin-3 is a novel chemoattractant for monocytes and macrophages1. J. Immunol. 2000.
    V. 165. № 4. P. 2156–2164. DOI: 10.4049/jimmunol.165.4.2156
  8. Ozturk D., Celik O., Satilmis S., et al. Association between serum galectin-3 levels and coronary atherosclerosis and plaque burden/structure in patients with type 2 diabetes mellitus. Coronary Artery Disease. 2015. V. 26. № 5. Р. 396–401. DOI: 10.1097/MCA.0000000000000252
  9. Yıldırım C., Vogel D.Y., Hollander M.R., et al. Galectin-2 Induces a Proinflammatory, AntiArteriogenic Phenotype in Monocytes and Macrophages. PLoS ONE. 2015. V. 10. № 4. P. e0124347. DOI: 10.1371/journal.pone.0124347
  10. Paclik D., Werner L., Guckelberger О., et al. Galectins distinctively regulate central monocyte and macrophage function. Cell. Immunol. 2011. V. 271. Iss. 1. P. 97–103. DOI: 10.1016/j.cellimm.2011.06.003
  11. Moiseeva E.P., Javed Q., Spring E.L., et al. Galectin 1 is involved in vascular smooth muscle cell proliferation. Cardiovascular Res. 2000. V. 45. № 2. P. 493–502. DOI: 10.1016/S0008-6363(99)00276-X
  12. Grandin E.W., Jarolim P., Murphy S.A., et al. Galectin-3 and the Development of Heart Failure after Acute Coronary Syndrome: Pilot Experience from PROVE IT-TIMI 22. Clin. Chem. 2012. V. 58. № 1. P. 267–273. DOI: 10.1373/clinchem.2011.174359
  13. Ishibashi S., Kuroiwa T., Sakaguchi М., et al. Galectin-1 regulates neurogenesis in the subventricular zone and promotes functional recovery after stroke. Exp. Neurol. 2007. V. 207. № 2. P. 302–313. DOI: 10.1016/j.expneurol.2007.06.024
  14. Nio-Kobayashi J., Itabashi T. Galectins and Their Ligand Glycoconjugates in the Central Nervous System Under Physiological and Pathological Conditions. Front. Neuroanat. 2021. V. 15. P. 767330. DOI: 10.3389/fnana.2021.767330
  15. Wang X., Niub Y., Yuea C.-X., et al. Increased ileal bile acid binding protein and galectin-9 are associated with mild cognitive impairment and Alzheimer's disease. J. Psychiatr. Res. 2019. V. 119. P. 102–106. DOI: 10.1016/j.jpsychires.2019.10.002
  16. Hernández E R., Sánchez-Maldonado C., Mayoral Chávez M.A., et al. The therapeutic potential of galectin-1 and galectin-3 in the treatment of neurodegenerative diseases. Expert. Rev. Neurother. 2020. V. 20. № 5. P. 439–448. DOI: 10.1080/14737175. 2020.1750955
  17. Cengiz T., Türkboylarıb S., Gençlerc O. S., et al. The roles of galectin-3 and galectin-4 in the idiopatic Parkinson disease and its progression. Clinical Neurology and Neurosurgery. 2019. V. 184. Р. 105373. DOI: 10.1016/j.clineuro.2019.105373
  18. Rabinovich G.A., Liu F.T., Hirashima M., et al. An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand. J. Immunol. 2007. V. 66. № 2-3. Р. 143–158. DOI: 10.1111/j.1365-3083.2007.01986.x
  19. Cao Z.-Q., Guo X.-L. The role of galectin-4 in physiology and diseases. Protein Cell. 2016. V. 7. № 5. P. 314–324. DOI: 10.1007/s13238-016-0262-9
  20. Waldner M.J., Neurath M.F. Master regulator of intestinal disease: IL-6 in chronic inflammation and cancer development. Semin. Immunol. 2014. V. 26. № 1. P. 75–79. DOI: 10.1016/j.smim.2013.12.003
  21. Nishida A., Nagahama K., Imaeda H., et al. Inducible colitis-associated glycome capable of stimulating the proliferation of memory CD4+ T cells. J. Exp. Med. 2012. V. 209. № 13. P. 2383–2394. DOI: 10.1084/jem.20112631
  22. Niki T., Fujita K., Rosen H., et al. Plasma Galectin-9 Concentrations in Normal and Diseased Condition. Cell. Physiol. Biochem. 2018. V. 50. P. 1856–1868. DOI: 10.1159/000494866
  23. Moar P., Tandon R. Galectin-9 as a biomarker of disease severity. Cell. Immunol. 2021. V. 361. P. 104287. DOI: 10.1016/j.cellimm. 2021.104287
  24. Sewgobind N.V., Albers S., Pieters R.J. Functions and inhibition of galectin-7, an emerging target in cellular pathophysiology. Biomolecules. 2021. V. 11. P. 1720–1745. DOI: 10.3390/biom11111720
  25. Hara A., Niwa M., Noguchi K., et al. Galectin-3: A Potential Prognostic and Diagnostic Marker for Heart Disease and Detection of Early Stage Pathology. Biomolecules. 2020. V. 10. № 9. P. 1277–1295. DOI: 10.3390/biom10091277
  26. Song X., Qiana X., Shen M., et al. Protein kinase C promotes cardiac fibrosis and heart failure by modulating galectin-3 expression. Biochim. Biophys. Acta. 2015. V. 1853. № 2. P. 513–521. DOI: 10.1016/j.bbamcr.2014.12.001
  27. Dumic J., Dabelic S., Flogel M. Galectin-3: An open-ended story. Biochim. Biophys. Acta. 2006. V. 1760. № 4. P. 616–635. DOI: 10.1016/j.bbagen.2005.12.020
  28. Yu L., Ruifrok W.P., Meissner M., et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ. Heart Fail. 2013. V. 6. № 1. P. 107–117. DOI: 10.1161/CIRCHEARTFAILURE.112.971168
  29. Lõpez B., González A., Querejeta R., et al. Galectin-3 and histological, molecular and biochemical aspects of myocardial fibrosis in heart failure of hypertensive origin. Eur. J. Heart Fail. 2015 V. 17. P. 385–392. https://DOI.org/10.1002/ejhf.246 
  30. Calvier L., Martinez-Martinez E., Miana M., et al. The impact of galectin-3 inhibition on aldosterone-induced cardiac and renal injuries. JACC. Heart Fail. 2015. V. 3. № 1. P. 59–67. DOI: 10.1016/j.jchf.2014.08.002
  31. Meijers W.C., RogiervanderVelde A., Pascual-Figal D.A., et al. Galectin-3 and post-myocardial infarction cardiac remodeling. Eur. J. Pharmacol. 2015. V. 763. Pt A. P. 115–121. DOI: 10.1016/j.ejphar.2015.06.025
  32. Liu Y.H., D’Ambrosio M., Liao T.D., et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growthregulatory lectin. Am. J. Physiol. Heart Circ. Physiol. 2009. V. 296. P. H404–H412.
  33. Slack R.J., Mills R., Mackinnon A.C. The therapeutic potential of galectin-3 inhibition in fibrotic disease. Int. J. Biochem. Cell. Biol. 2021. V. 130. P. 105881. DOI: 10.1016/j.biocel.2020.105881
  34. Kolatsi-Joannou M., Price K.L., Winyard P.J., et al. Modified citrus pectin reduces galectin-3 expression and disease severity in experimental acute kidney injury. PloS One. 2011. V. 6. № 4. P. e18683. DOI: 10.1371/journal.pone.0018683
  35. de Boer R.A., van der Velde A.R., Mueller C., et al. Galectin-3: a modifiable risk factor in heart failure. Cardiovasc. Drugs Ther. 2014. V. 28. № 3. P. 237–246. DOI: 10.1007/s10557-014-6520-2
  36. Frenay A.R., Yu L., van der Velde A.R., et al. Pharmacological inhibition of galectin-3 protects against hypertensive nephropathy. Am. J. Physiol. Renal Physiol. 2015. V. 308. № 5. P. F500–509. DOI: 10.1152/ajprenal.00461.2014
  37. French B., Wang L., Ky B., et al. Prognostic Value of Galectin-3 for Adverse Outcomes in Chronic Heart Failure. J. Cardiac. Fail. 2016. V. 22. № 4. P. 256–262. DOI: 10.1016/j.cardfail.2015.10.022
  38. Fedorova N.V., Kashtalap V.V., Khryachkova O.N., i dr. Galektin-3 – perspektivnyy biomarker riskometrii pri infarkte miokarda s podyemom segmenta ST. Ateroskleroz. 2015. T. 11. № 4. S. 49–55. (in Russian).
  39. Karetnikova V.N., Osokina A.V., Evseyeva M.V., i dr. Svyaz galektina syvorotki krovi i disfunktsii pochek pri infarkte miokarda s podyemom segmenta ST. Kardiologiya. 2016. T. 56. № 4. S. 25–31. DOI: 10.18565/cardio.2016.4.25-31 (in Russian).
  40. Saccon F., Gatto M., Ghirardello A., et al. Role of galectin-3 in autoimmune and non-autoimmune nephropathies. Autoimmun. Rev. 2017. V. 16. № 1. P. 34–47. DOI: 10.1016/j.autrev.2016.09.023
  41. Zamora E., Lupón J., de Antonio M., et al. Renal function largely influences Galectin-3 prognostic value in heart failure. Int. J. Cardiol. 2014. V. 177. № 1. Р. 171–177. DOI: 10.1016/j.ijcard.2014.09.011
  42. Milner T.D., Viner A.C., Mackinnon A.C., et al. Temporal expression of galectin-3 following myocardial infarction. Acta Cardiol. 2014. V. 69. № 6. P. 595–602. DOI: 10.1080/AC.69.6.1000001
  43. Ho J.E., Liu С., Lyass А., et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J. Am. College Cardiol. 2012. V. 60. № 14. P. 1249–1256. DOI: 10.1016/j.jacc.2012.04.053
  44. Djoussé L., Matsumoto C., Petrone A., et al. Plasma galectin 3 and heart failure risk in the Physicians' Health Study. Eur. J. Heart Failure. 2014. V. 16. № 3. P. 350–354. DOI: 10.1002/ejhf.21
  45. de Boer R.A., Lok D.J., Jaarsma T., et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann. Med. 2011. V. 43. № 1. Р. 60–68. DOI: 10.3109/07853890.2010.538080
  46. Chen A., Hou W., Zhang Y., et al. Prognostic value of serum galectin-3 in patients with heart failure: а meta-analysis. Int. J. Cardiol. 2015. V. 182. P. 168–170. DOI: 10.1016/j.ijcard.2014.12.137
  47. de Boer R.A., Voors A.A., Muntendam P., et al. Galectin-3: a novel mediator of heart failure development and progression. Eur. J. Heart Fail. 2009. V. 11. № 9. P. 811–817. DOI: 10.1093/eurjhf/hfp097
  48. Blanda V., Bracale U.M., Di Taranto M.D., et al. Galectin-3 in Cardiovascular Diseases. Int. J. Mol. Sci. 2020. V. 21. № 23. P. 9232–9250. DOI: 10.3390/ijms21239232
  49. Meijers W.C., Januzzi J.L., deFilippi C., et al. Elevated plasma galectin-3 is associated with near-term rehospitalization in heart failure: A pooled analysis of 3 clinical trials. Am. Heart J. 2014. V. 167. № 6. Р. 853–860.e4. DOI: 10.1016/j.ahj.2014.02.011
  50. De Giusti C.J., Ure A.E., Rivadeneyra L., et al. Macrophages and galectin 3 play critical roles in CVB3-induced murine acute myocarditis and chronic fibrosis. J. Mol. Cell. Cardiol. 2015. V. 85. P. 58–70. DOI: 10.1016/j.yjmcc.2015.05.010
  51. Varki A., Cummings R.D., Esko J.D., et al. (Eds.). Galectins. In Essentials of Glycobiology, 3rd; Cold Spring Harbor Laboratory Press: Cold Spring Harbor. NY. USA. 2015. P. 469–480.
  52. Cervantes-Alvarez E., la Rosa N.L., la Mora M.S., et al. Galectin-3 as a potential prognostic biomarker of severe COVID-19 in SARS-CoV-2 infected patients. Sci. Rep. 2022. V. 12. № 1. P. 1856. DOI: 10.1038/s41598-022-05968-4
  53. Caniglia J.L., Guda M.R., Asuthkar S., et al. A potential role for Galectin-3 inhibitors in the treatment of COVID-19. Peer. J. 2020. V. 8. P. e9392. DOI: 10.7717/peerj.9392
  54. Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Virol. 2016. V. 3. № 1. P. 237–261. DOI: 10.1146/annurev-virology-110615-042301
  55. Burguillos M.A., Svensson M., Schulte T., et al. Microglia-Secreted galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation. Cell. Rep. 2015. V. 10. № 9. P. 1626–1638. DOI: 10.1016/j.celrep.2015.02.012
  56. Doverhag C., Hedtjärn M., Poirier F., et al. Galectin-3 contributes to neonatal hypoxic-ischemic brain injury. Neurobiol. Dis. 2010. V. 38. № 1. Р. 36–46. DOI: 10.1016/j.nbd.2009.12.024
  57. Wu L., Zhao Q., Zhu X., et al. A novel function of microRNA let-7d in regulation of galectin-3 expression in attention deficit hyperactivity disorder rat brain. Brain. Pathol. 2010. V. 20. № 6. Р. 1042–1054. DOI: 10.1111/j.1750-3639.2010.00410.x
  58. Trompet S., Jukemaa W., P. Mooijaarte S., et al. Genetic variation in galectin-3 gene associates with cognitive function at old age. Neurobiol. Aging. 2012. V. 33. № 9. Р. 2232.e1–2232.e9. DOI: 10.1016/j.neurobiolaging.2012.05.001
  59. Boza-Serrano A., Ruiz R., Sanchez-Varo R., et al. Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease. Acta Neuropathol. 2019. V. 138. № 2. P. 251–273. DOI: 10.1007/s00401-019-02013-z
  60. Soares. L.C., Al-Dalahmah O., Hillis J., et al. Novel Galectin-3 Roles in Neurogenesis, Inflammation and Neurological Diseases. Cells. 2021. V. 10. № 11. P. 3047–3071. DOI: 0.3390/cells10113047
  61. Lalancette-Hebert M., Swarup V., Beaulieu J.M., et al. Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J. Neurosci. 2012. V. 32. № 30. P. 10383–10395. DOI: 10.1523/JNEUROSCI.1498-12.2012
  62. Li P., Liu S., Lu M., et al. Hematopoietic derived galectin-3 causes cellular and systemic insulin resistance. Cell. 2016. V. 167. № 4. P. 973–984.e12. DOI: 10.1016/j.cell.2016.10.025
  63. Mostacada K., Oliveira F.L., Villa-Verde D.M.S., et al. Lack of galectin-3 improves the functional outcome and tissue sparing by modulating inflammatory response after a compressive spinal cord injury. Exp. Neurol. 2015. V. 271. P. 390–400. DOI: 10.1016/j.expneurol.2015.07.006
  64. Pasmatzi E., Papadionysiou C., Monastirli A., et al. Galectin 3: an extraordinary multifunctional protein in dermatology. Сurrent knowledge and perspectives. An. Bras. Dermatol. 2019. V. 94. № 3. P. 348–354. DOI: 10.1590/abd1806-4841.20198426
  65. Hara A., Niwa M., Noguchi K., et al. Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases. Biomolecules. 2020. V. 10. P. 389–408. DOI: 10.3390/biom10030389
Date of receipt: 21.02.2023
Approved after review: 21.02.2023
Accepted for publication: 17.04.2023