N.N. Zybina1, O.V. Tikhomirova2, E.A. Kulikova3, P.L. Prischep4, N.E. Kushlinskii5
1–3 Nikiforov Russian Center of Emergency and Radiation Medicine, EMERCOM of Russia (Saint-Petersburg, Russia)
4,5 N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia (Moscow, Russia)
Recent studies demonstrate the potential of galectins as biomarkers of pathological processes. Of greatest interest in this regard is galectin-3, whose high levels are associated with the development of fibrosis in chronic heart failure and, presumably, can be used to stratify the risk of patients with myocardial infarction. At the same time, many effects of galectins remain unexplored and require systematic analysis.
The purpose of this work is to analyze the data of modern literature on the role of galectins of various classes in the implementation of the fundamental mechanisms of cellular functions and intercellular interactions in various pathological conditions and diseases.
The review presents data on the structure and classification of the family of galactoside-binding proteins - galectins, their role in activation, secretion of cytokines, cell migration, proliferation and apoptosis, as well as in interaction with the extracellular matrix. The diverse functions of galectins, which cause the interest of researchers in revealing the role of galectins in the pathogenesis of various diseases and pathological conditions, are considered. Identification of specific mechanisms of involvement of galectins in the pathogenesis of diseases, determination of their diagnostic and prognostic significance can become the basis for their use as biomarkers of pathological processes and targets for therapeutic intervention.
Zybina N.N., Tikhomirova O.V., Kulikova E.A., Prischep P.L., Kushlinskii N.E. Galectins: characteristics, role in pathogenesis, clinical course and prognosis of diseases. Technologies of Living Systems. 2023. V. 20. № 2. Р. 5-17. DOI: https://doi.org/10.18127/j20700997-202302-01 (In Russian)
- Leffler H. Galectin history, some stories, and some outstanding questions. Trends Glycosci. Glycotechnol. 2018. V. 30. № 172. P. SE129–SE135. DOI: 10.4052/tigg.1724.1SE.
- Cummings R.D., Liu F.T. Galectins. Essential of glycobiology, second ed. 2009
- van der Hoeven N.W., Hollander M.R., Yıldırımb C., et al. The emerging role of galectins in cardiovascular disease. Vascular Pharmacology. 2016. V. 81. P. 31-41. https://DOI.org/10.1016/j.vph.2016.02.006.
- Hsieh S.H., Ying N.W., Wu M.H., et al. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene. 2008. V. 27. № 26. P. 3746–3753. DOI: 10.1038/sj.onc.1211029
- Thijssen V.L., Hulsmans S., Griffioen A.W. The Galectin Profile of the Endothelium: Altered Expression and Localization in Activated and Tumor Endothelial Cells. Am. J. Pathol. 2008. V.172. № 2. P. 545–553. DOI: 10.2353/ajpath.2008.070938
- Chellan B., Narayani J., Appukuttan P.S. Galectin-1, an endogenous lectin produced by arterial cells, binds lipoprotein(a) [Lp(a)] in situ: Relevance to atherogenesis. Exp. Mol. Pathol. 2007. V. 83. № 3. P. 399-404. DOI: 10.1016/j.yexmp.2007.04.004
- Sano H., Hsu L., Yu J.R., et al. Human Galectin-3 is a novel chemoattractant for monocytes and macrophages1. J. Immunol. 2000.
V. 165. № 4. P. 2156–2164. DOI: 10.4049/jimmunol.165.4.2156 - Ozturk D., Celik O., Satilmis S., et al. Association between serum galectin-3 levels and coronary atherosclerosis and plaque burden/structure in patients with type 2 diabetes mellitus. Coronary Artery Disease. 2015. V. 26. № 5. Р. 396–401. DOI: 10.1097/MCA.0000000000000252
- Yıldırım C., Vogel D.Y., Hollander M.R., et al. Galectin-2 Induces a Proinflammatory, AntiArteriogenic Phenotype in Monocytes and Macrophages. PLoS ONE. 2015. V. 10. № 4. P. e0124347. DOI: 10.1371/journal.pone.0124347
- Paclik D., Werner L., Guckelberger О., et al. Galectins distinctively regulate central monocyte and macrophage function. Cell. Immunol. 2011. V. 271. Iss. 1. P. 97–103. DOI: 10.1016/j.cellimm.2011.06.003
- Moiseeva E.P., Javed Q., Spring E.L., et al. Galectin 1 is involved in vascular smooth muscle cell proliferation. Cardiovascular Res. 2000. V. 45. № 2. P. 493–502. DOI: 10.1016/S0008-6363(99)00276-X
- Grandin E.W., Jarolim P., Murphy S.A., et al. Galectin-3 and the Development of Heart Failure after Acute Coronary Syndrome: Pilot Experience from PROVE IT-TIMI 22. Clin. Chem. 2012. V. 58. № 1. P. 267–273. DOI: 10.1373/clinchem.2011.174359
- Ishibashi S., Kuroiwa T., Sakaguchi М., et al. Galectin-1 regulates neurogenesis in the subventricular zone and promotes functional recovery after stroke. Exp. Neurol. 2007. V. 207. № 2. P. 302–313. DOI: 10.1016/j.expneurol.2007.06.024
- Nio-Kobayashi J., Itabashi T. Galectins and Their Ligand Glycoconjugates in the Central Nervous System Under Physiological and Pathological Conditions. Front. Neuroanat. 2021. V. 15. P. 767330. DOI: 10.3389/fnana.2021.767330
- Wang X., Niub Y., Yuea C.-X., et al. Increased ileal bile acid binding protein and galectin-9 are associated with mild cognitive impairment and Alzheimer's disease. J. Psychiatr. Res. 2019. V. 119. P. 102–106. DOI: 10.1016/j.jpsychires.2019.10.002
- Hernández E R., Sánchez-Maldonado C., Mayoral Chávez M.A., et al. The therapeutic potential of galectin-1 and galectin-3 in the treatment of neurodegenerative diseases. Expert. Rev. Neurother. 2020. V. 20. № 5. P. 439–448. DOI: 10.1080/14737175. 2020.1750955
- Cengiz T., Türkboylarıb S., Gençlerc O. S., et al. The roles of galectin-3 and galectin-4 in the idiopatic Parkinson disease and its progression. Clinical Neurology and Neurosurgery. 2019. V. 184. Р. 105373. DOI: 10.1016/j.clineuro.2019.105373
- Rabinovich G.A., Liu F.T., Hirashima M., et al. An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer. Scand. J. Immunol. 2007. V. 66. № 2-3. Р. 143–158. DOI: 10.1111/j.1365-3083.2007.01986.x
- Cao Z.-Q., Guo X.-L. The role of galectin-4 in physiology and diseases. Protein Cell. 2016. V. 7. № 5. P. 314–324. DOI: 10.1007/s13238-016-0262-9
- Waldner M.J., Neurath M.F. Master regulator of intestinal disease: IL-6 in chronic inflammation and cancer development. Semin. Immunol. 2014. V. 26. № 1. P. 75–79. DOI: 10.1016/j.smim.2013.12.003
- Nishida A., Nagahama K., Imaeda H., et al. Inducible colitis-associated glycome capable of stimulating the proliferation of memory CD4+ T cells. J. Exp. Med. 2012. V. 209. № 13. P. 2383–2394. DOI: 10.1084/jem.20112631
- Niki T., Fujita K., Rosen H., et al. Plasma Galectin-9 Concentrations in Normal and Diseased Condition. Cell. Physiol. Biochem. 2018. V. 50. P. 1856–1868. DOI: 10.1159/000494866
- Moar P., Tandon R. Galectin-9 as a biomarker of disease severity. Cell. Immunol. 2021. V. 361. P. 104287. DOI: 10.1016/j.cellimm. 2021.104287
- Sewgobind N.V., Albers S., Pieters R.J. Functions and inhibition of galectin-7, an emerging target in cellular pathophysiology. Biomolecules. 2021. V. 11. P. 1720–1745. DOI: 10.3390/biom11111720
- Hara A., Niwa M., Noguchi K., et al. Galectin-3: A Potential Prognostic and Diagnostic Marker for Heart Disease and Detection of Early Stage Pathology. Biomolecules. 2020. V. 10. № 9. P. 1277–1295. DOI: 10.3390/biom10091277
- Song X., Qiana X., Shen M., et al. Protein kinase C promotes cardiac fibrosis and heart failure by modulating galectin-3 expression. Biochim. Biophys. Acta. 2015. V. 1853. № 2. P. 513–521. DOI: 10.1016/j.bbamcr.2014.12.001
- Dumic J., Dabelic S., Flogel M. Galectin-3: An open-ended story. Biochim. Biophys. Acta. 2006. V. 1760. № 4. P. 616–635. DOI: 10.1016/j.bbagen.2005.12.020
- Yu L., Ruifrok W.P., Meissner M., et al. Genetic and pharmacological inhibition of galectin-3 prevents cardiac remodeling by interfering with myocardial fibrogenesis. Circ. Heart Fail. 2013. V. 6. № 1. P. 107–117. DOI: 10.1161/CIRCHEARTFAILURE.112.971168
- Lõpez B., González A., Querejeta R., et al. Galectin-3 and histological, molecular and biochemical aspects of myocardial fibrosis in heart failure of hypertensive origin. Eur. J. Heart Fail. 2015 V. 17. P. 385–392. https://DOI.org/10.1002/ejhf.246
- Calvier L., Martinez-Martinez E., Miana M., et al. The impact of galectin-3 inhibition on aldosterone-induced cardiac and renal injuries. JACC. Heart Fail. 2015. V. 3. № 1. P. 59–67. DOI: 10.1016/j.jchf.2014.08.002
- Meijers W.C., RogiervanderVelde A., Pascual-Figal D.A., et al. Galectin-3 and post-myocardial infarction cardiac remodeling. Eur. J. Pharmacol. 2015. V. 763. Pt A. P. 115–121. DOI: 10.1016/j.ejphar.2015.06.025
- Liu Y.H., D’Ambrosio M., Liao T.D., et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growthregulatory lectin. Am. J. Physiol. Heart Circ. Physiol. 2009. V. 296. P. H404–H412.
- Slack R.J., Mills R., Mackinnon A.C. The therapeutic potential of galectin-3 inhibition in fibrotic disease. Int. J. Biochem. Cell. Biol. 2021. V. 130. P. 105881. DOI: 10.1016/j.biocel.2020.105881
- Kolatsi-Joannou M., Price K.L., Winyard P.J., et al. Modified citrus pectin reduces galectin-3 expression and disease severity in experimental acute kidney injury. PloS One. 2011. V. 6. № 4. P. e18683. DOI: 10.1371/journal.pone.0018683
- de Boer R.A., van der Velde A.R., Mueller C., et al. Galectin-3: a modifiable risk factor in heart failure. Cardiovasc. Drugs Ther. 2014. V. 28. № 3. P. 237–246. DOI: 10.1007/s10557-014-6520-2
- Frenay A.R., Yu L., van der Velde A.R., et al. Pharmacological inhibition of galectin-3 protects against hypertensive nephropathy. Am. J. Physiol. Renal Physiol. 2015. V. 308. № 5. P. F500–509. DOI: 10.1152/ajprenal.00461.2014
- French B., Wang L., Ky B., et al. Prognostic Value of Galectin-3 for Adverse Outcomes in Chronic Heart Failure. J. Cardiac. Fail. 2016. V. 22. № 4. P. 256–262. DOI: 10.1016/j.cardfail.2015.10.022
- Fedorova N.V., Kashtalap V.V., Khryachkova O.N., i dr. Galektin-3 – perspektivnyy biomarker riskometrii pri infarkte miokarda s podyemom segmenta ST. Ateroskleroz. 2015. T. 11. № 4. S. 49–55. (in Russian).
- Karetnikova V.N., Osokina A.V., Evseyeva M.V., i dr. Svyaz galektina syvorotki krovi i disfunktsii pochek pri infarkte miokarda s podyemom segmenta ST. Kardiologiya. 2016. T. 56. № 4. S. 25–31. DOI: 10.18565/cardio.2016.4.25-31 (in Russian).
- Saccon F., Gatto M., Ghirardello A., et al. Role of galectin-3 in autoimmune and non-autoimmune nephropathies. Autoimmun. Rev. 2017. V. 16. № 1. P. 34–47. DOI: 10.1016/j.autrev.2016.09.023
- Zamora E., Lupón J., de Antonio M., et al. Renal function largely influences Galectin-3 prognostic value in heart failure. Int. J. Cardiol. 2014. V. 177. № 1. Р. 171–177. DOI: 10.1016/j.ijcard.2014.09.011
- Milner T.D., Viner A.C., Mackinnon A.C., et al. Temporal expression of galectin-3 following myocardial infarction. Acta Cardiol. 2014. V. 69. № 6. P. 595–602. DOI: 10.1080/AC.69.6.1000001
- Ho J.E., Liu С., Lyass А., et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J. Am. College Cardiol. 2012. V. 60. № 14. P. 1249–1256. DOI: 10.1016/j.jacc.2012.04.053
- Djoussé L., Matsumoto C., Petrone A., et al. Plasma galectin 3 and heart failure risk in the Physicians' Health Study. Eur. J. Heart Failure. 2014. V. 16. № 3. P. 350–354. DOI: 10.1002/ejhf.21
- de Boer R.A., Lok D.J., Jaarsma T., et al. Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann. Med. 2011. V. 43. № 1. Р. 60–68. DOI: 10.3109/07853890.2010.538080
- Chen A., Hou W., Zhang Y., et al. Prognostic value of serum galectin-3 in patients with heart failure: а meta-analysis. Int. J. Cardiol. 2015. V. 182. P. 168–170. DOI: 10.1016/j.ijcard.2014.12.137
- de Boer R.A., Voors A.A., Muntendam P., et al. Galectin-3: a novel mediator of heart failure development and progression. Eur. J. Heart Fail. 2009. V. 11. № 9. P. 811–817. DOI: 10.1093/eurjhf/hfp097
- Blanda V., Bracale U.M., Di Taranto M.D., et al. Galectin-3 in Cardiovascular Diseases. Int. J. Mol. Sci. 2020. V. 21. № 23. P. 9232–9250. DOI: 10.3390/ijms21239232
- Meijers W.C., Januzzi J.L., deFilippi C., et al. Elevated plasma galectin-3 is associated with near-term rehospitalization in heart failure: A pooled analysis of 3 clinical trials. Am. Heart J. 2014. V. 167. № 6. Р. 853–860.e4. DOI: 10.1016/j.ahj.2014.02.011
- De Giusti C.J., Ure A.E., Rivadeneyra L., et al. Macrophages and galectin 3 play critical roles in CVB3-induced murine acute myocarditis and chronic fibrosis. J. Mol. Cell. Cardiol. 2015. V. 85. P. 58–70. DOI: 10.1016/j.yjmcc.2015.05.010
- Varki A., Cummings R.D., Esko J.D., et al. (Eds.). Galectins. In Essentials of Glycobiology, 3rd; Cold Spring Harbor Laboratory Press: Cold Spring Harbor. NY. USA. 2015. P. 469–480.
- Cervantes-Alvarez E., la Rosa N.L., la Mora M.S., et al. Galectin-3 as a potential prognostic biomarker of severe COVID-19 in SARS-CoV-2 infected patients. Sci. Rep. 2022. V. 12. № 1. P. 1856. DOI: 10.1038/s41598-022-05968-4
- Caniglia J.L., Guda M.R., Asuthkar S., et al. A potential role for Galectin-3 inhibitors in the treatment of COVID-19. Peer. J. 2020. V. 8. P. e9392. DOI: 10.7717/peerj.9392
- Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annu. Rev. Virol. 2016. V. 3. № 1. P. 237–261. DOI: 10.1146/annurev-virology-110615-042301
- Burguillos M.A., Svensson M., Schulte T., et al. Microglia-Secreted galectin-3 acts as a toll-like receptor 4 ligand and contributes to microglial activation. Cell. Rep. 2015. V. 10. № 9. P. 1626–1638. DOI: 10.1016/j.celrep.2015.02.012
- Doverhag C., Hedtjärn M., Poirier F., et al. Galectin-3 contributes to neonatal hypoxic-ischemic brain injury. Neurobiol. Dis. 2010. V. 38. № 1. Р. 36–46. DOI: 10.1016/j.nbd.2009.12.024
- Wu L., Zhao Q., Zhu X., et al. A novel function of microRNA let-7d in regulation of galectin-3 expression in attention deficit hyperactivity disorder rat brain. Brain. Pathol. 2010. V. 20. № 6. Р. 1042–1054. DOI: 10.1111/j.1750-3639.2010.00410.x
- Trompet S., Jukemaa W., P. Mooijaarte S., et al. Genetic variation in galectin-3 gene associates with cognitive function at old age. Neurobiol. Aging. 2012. V. 33. № 9. Р. 2232.e1–2232.e9. DOI: 10.1016/j.neurobiolaging.2012.05.001
- Boza-Serrano A., Ruiz R., Sanchez-Varo R., et al. Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease. Acta Neuropathol. 2019. V. 138. № 2. P. 251–273. DOI: 10.1007/s00401-019-02013-z
- Soares. L.C., Al-Dalahmah O., Hillis J., et al. Novel Galectin-3 Roles in Neurogenesis, Inflammation and Neurological Diseases. Cells. 2021. V. 10. № 11. P. 3047–3071. DOI: 0.3390/cells10113047
- Lalancette-Hebert M., Swarup V., Beaulieu J.M., et al. Galectin-3 is required for resident microglia activation and proliferation in response to ischemic injury. J. Neurosci. 2012. V. 32. № 30. P. 10383–10395. DOI: 10.1523/JNEUROSCI.1498-12.2012
- Li P., Liu S., Lu M., et al. Hematopoietic derived galectin-3 causes cellular and systemic insulin resistance. Cell. 2016. V. 167. № 4. P. 973–984.e12. DOI: 10.1016/j.cell.2016.10.025
- Mostacada K., Oliveira F.L., Villa-Verde D.M.S., et al. Lack of galectin-3 improves the functional outcome and tissue sparing by modulating inflammatory response after a compressive spinal cord injury. Exp. Neurol. 2015. V. 271. P. 390–400. DOI: 10.1016/j.expneurol.2015.07.006
- Pasmatzi E., Papadionysiou C., Monastirli A., et al. Galectin 3: an extraordinary multifunctional protein in dermatology. Сurrent knowledge and perspectives. An. Bras. Dermatol. 2019. V. 94. № 3. P. 348–354. DOI: 10.1590/abd1806-4841.20198426
- Hara A., Niwa M., Noguchi K., et al. Galectin-3 as a Next-Generation Biomarker for Detecting Early Stage of Various Diseases. Biomolecules. 2020. V. 10. P. 389–408. DOI: 10.3390/biom10030389