U.A. Bliznyuk1, P.Yu. Borschegovskaya2, Ya.V. Zubritskaya3, V.S. Ipatova4, A.A. Malyuga5, V.V. Rozanov6, A.P. Chernyaev7, N.S. Chulikova8, D.S. Yurov9
1–3,6,7 Lomonosov Moscow State University (Moscow, Russia)
1,2,4,7,9 Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University (Moscow, Russia)
3,8 Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences
(Novosibirskaya oblast, Novosibirskij rajon, r.p. Krasnoobsk, Russia)
Radiation technologies are widely used in the field of agriculture in order to accelerate the development of plants and increase crop yields, improve product quality and destroy pathogenic microflora. The technology of presowing seed irradiation is based on the ability of ionizing radiation to accelerate the growth and development of plants. An important condition for this is the selection of the correct dose ranges. This work is devoted to the study of the effect of presowing treatment of soybean and rapeseed seeds with accelerated electrons with a maximum energy of 1 MeV with different doses on the germination energy, germination, root and stem length of plants.
In the experiment, soybean and rapeseed seeds were irradiated at doses of 0, 5, 10, 30, 50 and 100 Gy. The dose rate varied in the range from 0.2 to 1.3 Gy/s. Dose distribution uniformity was determined using Geant4 software and varied from 50 to 80% depending on seed size. Seed growth studies were carried out at the Federal Scientific Research Center of the Russian Academy of Sciences. Seeds of cultures were placed in Petri dishes on a nutrient medium and germinated.
The research results showed non-linear dependences of the germination energy and germination of soybean and rapeseed seeds on the radiation dose. The maximum values of germination energy and germination of soybean seeds were observed in plants treated at a dose of 50 Gy, while the largest decrease in these indicators was recorded when treated at doses of 30 Gy and 100 Gy. The maximum values of germination energy and germination of rape seeds were observed in plants treated with doses of 5 Gy and 10 Gy, while the inhibitory effect on germination energy and seed germination occurs when seeds are treated with a dose of 50 Gy. In general, positive effects in relation to the biometric indicators of soybean and rapeseed were registered when seeds were treated with accelerated electrons at doses of 50 Gy and 10 Gy, respectively.
The obtained values of doses leading to seed stimulation partially agree with the data of various literary sources, which establish effective doses of radiation treatment in the range from 3 to 20 Gy. The discrepancies in the results can be associated both with the different spatial distribution of ionization events in the seeds under irradiation with different types of ionizing radiation, and with the difference in seed varieties and their growing season. In addition, the results of experiments may significantly depend on whether they were carried out in natural or laboratory conditions.
Bliznyuk U.A., Borschegovskaya P.Yu., Zubritskaya Ya.V., Ipatova V.S., Malyuga A.A., Rozanov V.V., Chernyaev A.P., Chulikova N.S.,
Yurov D.S. Influence of ionizing radiation on germination and biometric indicators of oilseeds. Technologies of Living Systems. 2023.
V. 20. № 1. Р. 79-88. DOI: https://doi.org/10.18127/j20700997-202301-09 (In Russian)
- Sanzharova N.I., Kozmin G.V., Pavlov A.N., Kobyalko V.O., Loy N.N., Tsygvintsev P.N. Radiatsionnyye tekhnologii v selskom khozyaystve i pishchevoy promyshlennosti: istoriya. sovremennoye sostoyaniye i perspektivy. Radiatsionnyye tekhnologii v selskom khozyaystve i pishchevoy promyshlennosti: sostoyaniye i perspektivy. 2018. S. 32–36. (in Russian).
- Kozmin G.V., Kobyalko V.O., Lykov I.N., Sarukhanov V.Ya., Zyakun A.M., Pavlov A.N., Nikolayeva T.S., Frolova N.A., Loginov A.A. Radiatsionnyye agrobiotekhnologii: issledovaniya mikrobiologicheskoy bezopasnosti i kachestva obluchennoy produktsii. Trudy regionalnogo konkursa proyektov fundamentalnykh nauchnykh issledovaniy. Kaluga. 2015. S. 216–225. (in Russian).
- Alexakhin R.M., Sanzharova N.I., Kozmin G.V., Pavlov A.N., Geraskin S.A. Future development of radiation technology in agricultural industry of Russian Federation. Vestnik RAEN. 2014. P. 78–85.
- Sanzharova N.I., Kozmin G.V., Bondarenko V.S. Radiatsionnyye tekhnologii v selskom khozyaystve: strategiya nauchno-tekhnicheskogo razvitiya. Innovatika i ekspertiza. 2016. Vyp. 1(16). S. 197–206. (in Russian).
- Bayurov L.I. Kurs lektsiy po selskokhozyaystvennoy radiologii: Uchebnoye posobiye. Krasnodar: KubGAU. 2009. 112 s. (S. 101). (in Russian).
- Chandrashekar K.R. et al. Effect of gamma irradiation on germination, growth, and biochemical parameters of Terminalia arjuna Roxb. Radiation Protection and Environment. 2013. V. 36. №. 1. P. 38.
- Ali H. et al. Effects of gamma radiation on crop production. Crop production and global environmental issues. Springer, Cham. 2015. P. 27–78.
- Aref I.M. et al. Response of Datura innoxia Linn. to gamma rays and its impact on plant growth and productivity. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2016. V. 86. №. 3. P. 623–629.
- Aynehband A., Afsharinafar K. Effect of gamma irradiation on germination characters of amaranth seeds. European J. Exp. Biol. 2012. V. 2. № 4. P. 995–999.
- Beyaz R. et al. The effect of gamma radiation on seed germination and seedling growth of Lathyrus chrysanthus Boiss. under in vitro conditions. Journal of Environmental Radioactivity. 2016. V. 162. P. 129–133.
- Borzouei A. et al. Effects of gamma radiation on germination and physiological aspects of wheat (Triticum aestivum L.) seedlings. Pak. J. Bot. 2010. V. 42. № 4. P. 2281–2290.
- Hegazi A.Z., Hamideldin N. The effect of gamma irradiation on enhancement of growth and seed yield of okra [Abelmoschus esculentus (L.) Monech] and associated molecular changes. Journal of Horticulture and Forestry. 2010. V. 2. № 3. P. 38–51.
- Trofimova E.A., Dementyev D.V., Bolsunovskiy A.Ya. Vliyaniye gamma-izlucheniya na razvitiye rasteniy iz obluchennykh semyan i prorostkov Alliumcepa L. Radiatsionnaya biologiya. Radioekologiya. 2019. T. 59. № 3. S. 293–299. (in Russian).
- Geraskin S.A., Volkova P.Yu., Churyukin R.S., Bitarishvili S.V., Bondarenko V.S., Kazakova E.A. Mekhanizmy formirovaniya adaptivnykh reaktsiy pri obluchenii semyan selskokhozyaystvennykh kultur nizkimi dozami ioniziruyushchego izlucheniya. Radiatsionnyye tekhnologii v selskom khozyaystve i pishchevoy promyshlennosti: sostoyaniye i perspektivy. 2018. S. 69–72. (in Russian).
- Perkova A.V., Volkova P.Yu. Analiz izmeneniy proliferativnoy aktivnosti kletok kornevoy meristemy prorostkov yachmenya. vyrosshikh iz gamma-obluchennykh semyan. Radiatsionnyye tekhnologii v selskom khozyaystve i pishchevoy promyshlennosti: sostoyaniye i perspektivy. 2018. S. 98–100. (in Russian).
- Ponomarenko P.A., Bezotosnyy S.S., Frolova M.A. Stimulyatsionnyy effekt pri spetsobrabotke semyan selskokhozyaystvennykh kultur gamma-luchami. Radiatsionnyye tekhnologii v selskom khozyaystve i pishchevoy promyshlennosti: sostoyaniye i perspektivy. 2018.
S. 112–114. (in Russian). - Razdayvodin A.N., Radin A.I., Kalnin V.V., Pavlov A.N., Ryabinkov A.P., Karpov A.D., Prorokov A.A. Vliyaniye ioniziruyushchego izlucheniya na razvitiye patogennykh gribov roda Alternaria na semenakh yasenya obyknovennogo (Fraxinusexcelsior L.). Radiatsionnyye tekhnologii v selskom khozyaystve i pishchevoy promyshlennosti: sostoyaniye i perspektivy. 2018. S. 114–117. (in Russian).
- Bliznyuk U., Chulikova N., Ipatova V., Malyuga A. Effect of ionizing radiation with 1 MeV on phenology of potatoes inhabited by fungi Rhizoctonia solani Kuhn. E3S Web of Conferences. EDP Sciences. 2021. V. 285.
- GlavAgronom. Soya Zolotistaya. [Elektronnyy resurs]. – URL: https://glavagronom.ru/base/seeds/maslichnie-soya-zolotistaya-omskiy-anc-9253367 (data obrashcheniya 15.11.2022). (in Russian).
- GlavAgronom. Raps Bilder [Elektronnyy resurs]. – URL: https://glavagronom.ru/base/seeds/maslichnie-raps-yarovoi-bilder-8756560 (data obrashcheniya 15.11.2022). (in Russian).
- Rozanov V.V., Matveychuk I.V., Chernyayev A.P., Nikolayeva A.A., Belousov A.V., Yurov D.S. Eksperimentalnoye podtverzhdeniye effektivnosti kombinirovannoy sterilizatsii kostnykh implantatov. Tekhnologii zhivykh sistem. 2018. T. 15. № 1. S. 41–48. (in Russian).
- Bliznyuk U.A., Borchegovskaya P.Yu., Chernyaev A.P., Avdukhina V.M., Ipatova V.S., Leontiev V.A., Studenikin F.R. Computer simulation to determine food irradiation dose levels. IOP Conference Series: Earth and Environmental Science. 2019. V. 365. № 1. P. 012002.
- Bilay V.I. Metody eksperimentalnoy mikologii. Kiyev: Naukova dumka. 1982. 550 s. (in Russian).
- Panikov N.S. Kinetika rosta mikroorganizmov. M.: Nauka. 1991. 309 s. (in Russian).
- Posypanov G.S., Dolgodvorov V.E., Zherukov B.Kh i dr. Rasteniyevodstvo. Pod red. G.S. Posypanova. M.: KolosS. 2007. 612 s. (in Russian).
- Churyukin R.S. Zakonomernosti formirovaniya biologicheskikh effektov pri ?-obluchenii semyan yachmenya: Dis. Obninsk: VNIIRAE. 2017. (in Russian).
- Nguyen S.T., Pyatkova S.V., Udalova A.A. Predposevnaya obrabotka semyan soi gamma-izlucheniyem. Tekhnogennyye sistemy i ekologicheskiy risk. 2021. S. 428–430. (in Russian).
- Kislova E.A. Radiobiologicheskaya reaktsiya prorostkov ozimogo rapsa. Faktori eksperimentalnoї evolyutsії organіzmіv. 2008. (in Russian).
- Levin V.I. Agroekologicheskiye effekty vozdeystviya na semena rasteniy elektromagnitnykh poley razlichnoy modalnosti: Avtoref. diss… dokt. s./kh. nauk. 2000. (in Russian).