350 rub
Journal Technologies of Living Systems №1 for 2023 г.
Article in number:
Changes in mineral metabolism and activity of antioxidant enzymes in disorders of carbohydrate and lipid metabolism in Wistar rats
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700997-202301-07
UDC: 577.128/.151.63
Authors:

S.V. Notova1, O.V. Marshinskaia2, T.V. Kazakova3, N.N. Tupikova4

1–3 Institute of Bioelementology, Orenburg State University (Orenburg, Russia)

2,3 Federal Research Centre of Biological Systems and Agrotechnologies of the RAS (Orenburg, Russia)

4 Orenburg Institute of Samara State University of Railway Transport (Orenburg, Russia)

Abstract:

The diet of modern man is characterized by an unprecedented high level of consumption of high-calorie food in combination with lack of physical activity. Prolonged use of a high-calorie diet leads to disturbances in the metabolism of the body, in particular carbohydrate and lipid metabolism. These disorders precede the development of type 2 diabetes mellitus, obesity, non-alcoholic fatty liver disease and a number of other diseases. In this regard, the aim of the work was to investigate the functional state, mineral metabolism and activity of antioxidant enzymes in the blood serum and liver of Wistar rats with disorders of carbohydrate and lipid metabolism developing against the background of a high-calorie diet. The data obtained during the study show that exposure to a high-calorie diet for 12 weeks led to a violation of carbohydrate and lipid metabolism, a decrease in the activity of antioxidant enzymes (catalase, glutathione peroxidase, superoxide dismutase) in blood serum and liver. When evaluating the analysis of chemical elements, a decrease in the level of Fe, Cr, I, Zn, K, Ca, Se and an increase in V, Co in blood serum were found. In the liver tissues of animals of the experimental group, there was a decrease in the level of Li, Se and an increase in the level of Zn, Ca, V, Cr, Fe, Co. Thus, the concentration of these trace elements has a significant effect on the state of carbohydrate and lipid metabolism, as well as on the activity of antioxidant enzymes and, consequently, on protection from oxidative stress. The data obtained show that the high-calorie diet used in the study makes it possible to simulate metabolic disorders and proves the effectiveness of its use in studies of carbohydrate and lipid metabolism in laboratory animals. Further studies of mineral metabolism can improve understanding of the pathogenesis of a number of diseases associated with disorders of carbohydrate and lipid metabolism. In addition, the results of this study contribute to increasing evidence-based awareness against eating unhealthy foods.

Pages: 62-71
For citation

Notova S.V., Marshinskaia O.V., Kazakova T.V., Tupikova N.N. Changes in mineral metabolism and activity of antioxidant enzymes in disorders of carbohydrate and lipid metabolism in Wistar rats. Technologies of Living Systems. 2023. V. 20. № 1. Р. 62-71. DOI: https://doi.org/10.18127/j20700997-202301-07 (In Russian)

References
  1. Smith R.L., Soeters M.R., Wüst R.C.I., Houtkooper R.H. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocrine Reviews. 2018. V. 39. № 4. P. 489–517.
  2. Lopez-Otin C., Galluzzi L., Freije J.M.P., Madeo F., Kroemer G. Metabolic control of longevity. Cell. 2016. V. 166. № 4. P. 802–821.
  3. Frame-Peterson L.A., Megill R.D., Carobrese S., Schweitzer M. Nutrient Deficiencies Are Common Prior to Bariatric Surgery. Nutrition in Clinical Practice. 2017. V. 32. № 4. P. 463–469.
  4. Radkevich L.A., Kabankin A.S., Radkevich D.A. Metabolicheskiy sindrom – risk onkologicheskikh zabolevaniy (populyatsionnoye issledovaniye). Tekhnologii zhivykh sistem. 2017. T. 14. № 2. S. 28–37. (in Russian).
  5. Monteiro R., Azevedo I. Chronic Inflammation in Obesity and the Metabolic Syndrome. Mediators of Inflammation. 2010. V. 2010. P. 289645.
  6. Choi S., Liu X., Pan Z. Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacologica Sinica. 2018. V. 39. № 7. P. 1120-1132.
  7. Galaris D., Barbouti A., Pantopoulos K. Iron homeostasis and oxidative stress: An intimate relationship. Biochim. Biophys. Acta Mol. Cell Res. 2019. V. 1866. № 12. P. 118535.
  8. Meisinger C., Stöckl D., Rückert I., Döring A., Thorand B., Heier M., Huth C., Belcredi P., Kowall B., Rathmann W. Serum potassium is associated with prediabetes and newly diagnosed diabetes in hypertensive adults from the general population: The KORA F4-study. Diabetologia. 2013. V. 56. P. 484–491.
  9. Skrypnik D., Bogdański P., Skrypnik K., Madry E., Karolkiewicz J., Szulińska M., Suliburska J., Walkowiake J. Influence of endurance and endurance-strength training on mineral status in women with abdominal obesity: a randomized trial. Medicine (Baltimore). 2019. V. 98. № 12. P. e14909.
  10. Skalnyy A.V., Miroshnikov S.A., Notova S.V., Boludirina I.P., Miroshnikov S.V., Alidzhanova I.E. Regionalnyye osobennosti gomeostaza kak pokazatel ekologo-fiziologicheskoy adaptatsii. Ekologiya cheloveka. 2014. № 9. S. 14–17.
  11. Pavlova Z.Sh., Golodnikov I.I., Kamalov A.A. Biokhimicheskiye mekhanizmy razvitiya nealkogolnoy zhirovoy bolezni pecheni pod vozdeystviyem fruktozy. Tekhnologii zhivykh sistem. 2018. T. 15. № 4. S. 18-27. DOI: 10.18127/j20700997-201804-02 (in Russian).
  12. Jagannathan R., Neves J.S., Dorcely B., Chung S.T., Tamura K., Rhee M., Bergman M. The Oral Glucose Tolerance Test: 100 Years Later. Diabetes, Metabolic Syndrome and Obesity. 2020. V. 13. P. 3787–3805.
  13. Klop B., Elte J.W.F., Cabezas M.C. Dyslipidemia in obesity: mechanisms and potential targets. Nutrients. 2013. V. 5. № 4. Р. 1218–1240.
  14. Aydemir D., Sarayloo E., Nuray U.N. Rosiglitazone-induced changes in the oxidative stress metabolism and fatty acid composition in relation with trace element status in the primary adipocytes. Journal of Medical Biochemistry. 2020. V. 39. № 3. P. 267–275.
  15. Wołonciej M., Milewska E., Roszkowska-Jakimiec W. Trace elements as an activator of antioxidant enzymes. Postepy Hig Med Dosw (Online). 2016. V. 70. P. 1483–1498.
  16. Robberecht H., De Bruyne T., Hermans N. Biomarkers of the Metabolic Syndrome: Influence of Minerals, Oligo- And Trace Elements. Journal of Trace Elements in Medicine and Biology. 2017. V. 43. P. 23–28.
  17. Gammoh N.Z., Rink L. Zinc in Infection and Inflammation. Nutrients. 2017. V 9. P. 624.
  18. Song Z., Wang Y., Zhang F., Yao F., Sun C. Calcium Signaling Pathways: Key Pathways in the Regulation of Obesity. International Journal of Molecular Sciences. 2019. V. 20. № 11. Р. 2768.
  19. Lewicki S., Zdanowski R., Krzyżowska M., Lewicka A., Dębski B., Niemcewicz M., Goniewicz M. The role of Chromium III in the organism and its possible use in diabetes and obesity treatment. Annals of Agricultural and Environmental Medicine. 2014. V. 21(2). P. 331–335.
  20. Bjørklund G., Peana M., Pivina L., Dosa A., Aaseth J., Semenova Y., Chirumbolo S., Medici S., Dadar M., Costea D.O. Iron Deficiency in Obesity and after Bariatric Surgery. Biomolecules. 2021. V. 11. № 5. P. 613.
  21. Galaris D., Barbouti A., Pantopoulos K. Iron homeostasis and oxidative stress: An intimate relationship. Biochimica et Biophysica Acta (BBA) – Molecular Cell Research. 2019. V. 1866. № 12. P. 118535.
  22. Choi S., Liu X., Pan Z.  Zinc deficiency and cellular oxidative stress: prognostic implications in cardiovascular diseases. Acta Pharmacologica Sinica. 2018. V. 39. № 7. Р. 1120–1132.
  23. Li H.T., Jiao M., Chen J., Liang Y. Roles of zinc and copper in modulating the oxidative refolding of bovine copper, zinc superoxide dismutase. Acta Biochimica et Biophysica Sinica (Shanghai). 2010. V. 42. P. 183–194.
  24. Kiełczykowska M., Kocot J., Paździor M., Musik I. Selenium – a fascinating antioxidant of protective properties. Adv Clin Exp Med. 2018. V. 27. № 2. P. 245–255.
  25. Steinbrenner H., Duntas L.H., Raymanc M.P. The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biol. 2022. V. 50. P. 102236.
  26. Hariharan S., Dharmaraj S. Selenium and selenoproteins: it’s role in regulation of inflammation. Inflammopharmacology. 2020. V. 28. № 3. Р. 667–695.
Date of receipt: 31.08.2022
Approved after review: 14.12.2022
Accepted for publication: 20.02.2023