350 rub
Journal Technologies of Living Systems №1 for 2023 г.
Article in number:
Application of microwave radiometry in dermatology
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700997-202301-05
UDC: 615.471
Authors:

M.K. Sedankin1, S.G. Vesnin2, A.G. Gudkov3, K.V. Zhuravleva4, V.V. Nazarov5, S.V. Chizhikov6

1–3,5,6 Bauman Moscow State Technical University (Moscow, Russia)

4 Moscow Power Engineering Institute (Moscow, Russia)

Abstract:

All work in the field of creating medical thermometric devices goes in two directions: the development of intracavitary devices that measure temperature through natural cavities, and devices that measure temperature through the skin. Pathological processes are characterized by a local change in temperature, which can be registered by a microwave radiothermograph. The aim of the work is the issues of the application of microwave radiometry in dermatology, application potential assessment and determination of the direction of further research. The data of the first applications of microwave radiometry in dermatology are presented. All patients also underwent fluorescent diagnostics and dermatoscopy. Then they were operated on with a mandatory histological examination of the removed macropreparation. Thermal asymmetry was 2.2 ± 0.08 °C on the projection of melanoma, and only 0.21 ± 0.06 °C on the projection of benign neoplasms. Pronounced temperature asymmetry (2.1 ± 0.08 °C) also occurred in patients with basilioma and squamous cell skin cancer. Temperature asymmetry was detected in 68 cases of 70 examined patients with melanoma (97.1% sensitivity). A similar thermal asymmetry was noted in 98.7% of patients with basilioma and squamous cell skin cancer. At the same time, 96.7% of patients with benign skin tumors did not have thermal asymmetry, which is important for screening diagnostics.

Thus, microwave radiometry can be effectively used to identify patients with malignant skin tumors. The authors recommend using the method for screening studies with differential diagnosis of patients with benign and malignant skin tumors considering the simplicity of the method, its high information content and harmlessness for the doctor and the patient. The obvious advantage of the method is the ability to visualize the prevalence of the tumor process. For the moment it is necessary to improve medical equipment for diagnosing melanoma based on microwave radiometry. The use of new circuit solutions in microwave radiothermographs, as well as a modern element base, will significantly reduce the size of the equipment., A promising direction in dermatology is the use of a miniature single-frequency radiothermograph, which makes it possible to visualize the temperature of neoplasms of the skin and surrounding tissues and monitor the thermal activity of tissues during treatment.

Pages: 46-54
For citation

Sedankin M.K., Vesnin S.G., Gudkov A.G., Zhuravleva K.V., Nazarov V.V., Chizhikov S.V. Application of microwave radiometry in dermatology. Technologies of Living Systems. 2023. V. 20. № 1. Р. 46-54. DOI: https://doi.org/10.18127/j20700997-202301-05 (In Russian)

References
  1. Erkenova F.D., Puzin S.N. Statistika melanomy v Rossii i stranakh Evropy. Mediko-sotsialnaya ekspertiza i reabilitatsiya. 2020. T. 23. № 1. S. 44–52. (in Russian).
  2. Kaprin A.D., Starinskiy V.V., Petrova G.V. Zlokachestvennyye novoobrazovaniya v Rossii v 2018 godu (zabolevayemost i smertnost). M.: MNIOI im. P.A. Gertsena – filial FGBU «NMITs radiologii» Minzdrava Rossii. 2019. 250 s. (in Russian).
  3. Kaprin A.D., Starinskiy V.V., Petrova G.V. Sostoyaniye onkologicheskoy pomoshchi naseleniyu Rossii v 2018 godu. M.: MNIOI im. P.A. Gertsena – filial FGBU «NMITs radiologii» Minzdrava Rossii. 2019. 237 s. (in Russian).
  4. Malishevskaya N.P., Sokolova A.V., Demidov L.V. Sovremennoye sostoyaniye zabolevayemosti melanomoy kozhi v Rossiyskoy Federatsii i federalnykh okrugakh. Meditsinskiy sovet. 2018. № 10. S. 161–165. (in Russian).
  5. Potekayev N.N. i dr. Epidemiologiya melanomy kozhi v Rossiyskoy Federatsii i v gorode Moskve za 10 let (2008—2018 gg.). Klinicheskaya dermatologiya i venerologiya». 2020. T. 19. № 6. S. 810–816. (in Russian).
  6. Gershenwald J.E. et al. Melanoma staging: Evidence-based changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J. Clin. 2017. V. 67. № 6. P. 472–492.
  7. Breitbart E.W. et al. Systematic skin cancer screening in Northern Germany. J. Am. Acad. Dermatol. 2012. V. 66. № 2. P. 201–211.
  8. Pensioners seven times more likely to get deadly skin cancer than 40 years ago. Cancer Research UK http://www.cancerresearchuk.org/about-us/cancer-news/press-release/2015-04-06-pensioners-seven-times-more-likelv-to-get-deadlv-skin-cancer-than-40-years-ago?utmsource=twittercruk&utmmedium=cruksocialmedia& utmcampaign=owntwitter tweet [Elektronny resurs] – 06.07.2022
  9. Lemekhov V.G. Epidemiologiya. faktory riska. skrining melanomy kozhi. Prakticheskaya onkologiya. 2001. № 4(8). S. 3–11. (in Russian).
  10. Balch C.M. et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the american joint committee on cancer melanoma staging system. J. Clin. Oncol. 2001. V. 19. № 16. P. 3622–3634.
  11. Garanina O.E. i dr. Neinvazivnyye metody diagnostiki opukholey kozhi i ikh potentsial primeneniya dlya skrininga melanomy kozhi: sistematicheskiy obzor literatury. Meditsinskiy sovet. 2020. № 9. S. 97–115. (in Russian).
  12. Sokolov D.V. i dr. Dermatoskopiya (epilyuminestsentnaya poverkhnostnaya mikroskopiya): in vivo diagnostika melanomy kozhi (obzor literatury). Sibirskiy onkologicheskiy zhurnal. 2008. № 5. S. 63–67. (in Russian).
  13. Malishevskaya N.P., Sokolova A.V. Sovremennyye metody neinvazivnoy diagnostiki melanomy kozhi. Vestnik dermatologii i venerologii. 2014. № 4. S. 46–53. (in Russian).
  14. Gudkov A.G. i dr. Ispolzovaniye metoda mnogokanalnoy mikrovolnovoy radiometrii dlya funktsionalnoy diagnostiki golovnogo mozga. Meditsinskaya tekhnika. 2019. № 2. S. 22–25. (in Russian).
  15. Kozlov S.V., Fomenko G.A., Martynova E.V. Primeneniye radiotermometrii dlya diagnostiki melanom kozhi. Materialy nauchnoy konferentsii «Dni rossiyskogo onkologicheskogo nauchnogo tsentra im. N.N. Blokhina RAMN v Samarskoy oblasti. 26-27 maya 2005 goda. [Elektronnyy resurs] http://www.radiometry.ru/radiometry/ books/upload/495/13020708.pdf (data obrashcheniya: 10.07.2022) (in Russian).
  16. Kozlov S.V., Neretin E.Yu. Sravnitelnyy analiz metodov preinvazivnoy diagnostiki melanomy kozhi. Saratovskiy nauchno-meditsinskiy zhurnal. 2013. T. 9. № 1. S. 88–91. (in Russian).
  17. Galka A.G. Razvitiye metoda blizhnepolnoy rezonansnoy diagnostiki parametrov dielektricheskikh sred: Dis. kand. fiz.-mat. nauk. – Nizhniy Novgorod: 2019. 154 s. (in Russian).
  18. Martusevich A.K. i dr. Metod blizhnepolnogo rezonansnogo SVCh-zondirovaniya v izuchenii dielektricheskikh svoystv razlichnykh uchastkov kozhi (eksperimentalnoye issledovaniye). Sovremennyye tekhnologii v meditsine. 2020. T. 12. № 5. S. 57–61. (in Russian).
  19. Burdette E.C. et al. Review of the dielectric properties of animal and human tumors determined from in vivo measurements. Critical Reviews™ in Biomedical Engineering. 2016. V. 44. № 4. P. 293–318.
  20. Dubuc D. et al. In vitro and in vivo investigations toward near-field microwave-based detection of melanoma //First IEEE MTT-S International Microwave Bio Conference (IMBIOC). 15-17 May 2017, Gothenburg, Sweden. P. 1–4.
  21. Mohammed B.J. et al. Changes in epidermal dielectric properties due to skin cancer across the band 1 to 50 GHz. 2018 Australian Microwave Symposium (AMS). 06-07 February 2018 Brisbane, QLD, Australia IEEE. 2018. P. 77–78.
  22. Andreuccetti D., Fossi R., Petrucci C. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz - 100 GHz. IFAC-CNR, Florence (Italy), 1997. Based on data published by C.Gabriel et al. in 1996. [Online]. Available: http://niremf.ifac.cnr.it/tissprop/ 10.07.2022
  23. Vesnin S.G., Sedankin M.K. Sravneniye mikrovolnovykh antenn-applikatorov meditsinskogo naznacheniya. Biomeditsinskaya radioelektronika. 2012. № 10. S. 63–74. (in Russian).
  24. Vesnin S.G., Sedankin M.K. Miniatyurnyye antenny-applikatory dlya mikrovolnovykh radiotermometrov meditsinskogo naznacheniya. Biomeditsinskaya radioelektronika. 2011. № 10. S. 51–56. (in Russian).
  25. Vesnin S.G., Sedankin M.K. Matematicheskoye modelirovaniye sobstvennogo izlucheniya tkaney cheloveka v mikrovolnovom diapazone. Biomeditsinskaya radioelektronika. 2010. № 9. S. 33–44. (in Russian).
  26. Sedankin M.K. i dr. Diagnosticheskaya konformnaya sistema dlya neyrovizualizatsii golovnogo mozga s ispolzovaniyem mnogokanalnogo radiotermometra na osnove monolitnykh integralnykh skhem. Nanotekhnologii: razrabotka. primeneniye – XXI vek. 2020. T. 12. № 1. S. 43–50. (in Russian).
  27. Porokhov I.O. Shirokopolosnaya aktivnaya antenna dlya monitoringa istochnikov elektromagnitnogo izlucheniya// Nanotekhnologii: razrabotka. primeneniye – XXI vek. 2022. T. 14. № 3. S. 14–21. (in Russian).
  28. Gulyayev Yu.V. i dr. Pribory dlya diagnostiki patologicheskikh izmeneniy v organizme cheloveka metodami mikrovolnovoy radiometrii. Nanotekhnologii: razrabotka. primeneniye – XXI vek. 2017. T. 9. № 2. S. 27–45. (in Russian).
  29. Vesnin S.G. et al. Portable microwave radiometer for wearable devices. Sensors and Actuators A: Physical. 2021.
    V. 318. P. 112506.
  30. Leushin V.Yu. Rezultaty razrabotki eksperimentalnogo obraztsa pribora dlya neinvazivnoy diagnostiki sostoyaniya golovnogo mozga s ispolzovaniyem metoda mnogokanalnoy mikrovolnovoy radiometrii. Nanotekhnologii: razrabotka. primeneniye – XXI vek. 2019. T. 11. № 1. S. 44–50. (in Russian).
  31. Gudkov A.G. i dr. Printsipy postroyeniya mnogokanalnogo mnogochastotnogo radiotermografa na osnove monolitnykh integralnykh skhem. Uspekhi sovremennoy radioelektroniki. 2020. T. 74. № 10. S. 30–49. (in Russian).
Date of receipt: 30.09.2022
Approved after review: 15.11.2022
Accepted for publication: 20.02.2023