350 rub
Journal Technologies of Living Systems №4 for 2022 г.
Article in number:
Modification of biodegradable polymers with natural antioxidants
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700997-202204-05
UDC: 615.46
Authors:

M.A. Yakovleva1, V.N. Gorshenev2, A.E. Dontsov3, A.A. Olkhov4

1–4 Federal State Budgetary Institution of Science
Institute of Biochemical Physics named after N.M. Emanuel RAS (Moscow, Russia)

Abstract:

The creation of biodegradable polymers has significantly influenced the development and rapid growth of various technologies in modern medicine. Currently, biodegradable polymers are used in two main medical applications: tissue engineering and targeted drug delivery. The criterion for the selection of biodegradable polymers is that the degradation products of the polymer must be non-toxic, and the degradation rate and mechanical properties of the material must correspond to the biomaterial of a living organism. The creation of biocomposites based on biodegradable polymers with dosage forms and antioxidants allows their dosed prolonged release during the destruction of the polymer matrix. Which, in turn, when used in medicine can provide dosed delivery of dosage forms to the area of diseases. Melanin is widely known for its strong antioxidant properties. In addition, it is used as an antimutagenic agent for the prevention of genetic and ontogenetic consequences of radiation exposure. The purpose of the work was to develop methods for the manufacture of polymer compositions with melanins with antioxidant activity and to study changes in the properties of composites during their destruction. To study the properties of biocomposites, the following methods were used – spectrophotometric, fluorescent analysis, thermogravimetric analysis, differential scanning calorimetry. Several different mixing schemes have been tested to obtain biocomposites with an included antioxidant. It has been shown that the natural antioxidants melanin form composites with biodegradable polymers: polyhydroxybutyrate (PHB), polylactide (PLA) and polycaprolactone (PCL), and the released melanin does not lose its antioxidant properties during the biodegradation of such composites. An approach to the creation of polymeric biocomposites containing biologically active substances based on the use of the technique of mixing components in an ultrasonic field and thermally stimulated microwave heating is proposed.

Pages: 52-59
For citation

Yakovleva M.A., Gorshenev V.N., Dontsov A.E., Olkhov A.A. Modification of biodegradable polymers with natural antioxidants. Technologies of Living Systems. 2022. V. 19. № 4. Р. 52-59. DOI: https://doi.org/10.18127/j20700997-202204-05 (In Russian)

References
  1. Nanostruktury v biomeditsine. Pod red. K.E. Gonsalves. K.R. Khalbershtadt. K.T. Lorensin. M.: BINOM. Laboratoriya znaniy. 2015. 519 s. (in Russian).
  2. Nadezhdin S.V., Burda Yu.E., Zubareva E.V., Botvin V.V., Pokrovskaya L.A., Latypov A.D., Volkovnyak N.N., Grebtsova E.A., Belyayeva V.S. Otvetnaya reaktsiya zhivykh sistem pri vzaimodeystvii s osteokonduktivnym materialom na osnove nanogid-roksiapatita sopolimerov laktida i glikolida. Tekhnologii zhivykh sistem. 2018. T. 15. № 2. S. 22–29. (in Russian).
  3. Holland T.A., Mikos A.G. Review: Biodegradable Polymeric Scaffolds. Improvements in Bone Tissue Engineering through Controlled Drug Delivery. Adv. Biochem. Engin/Biotechnol. 2006. V. 102. P. 161–185. DOI: 10.1007/b137205
  4. Shtilman M.I. Polimery mediko-biologicheskogo naznacheniya. M.: IKTs «Akademkniga». 2006. 400 s. (in Russian).
  5. Gorshenev V.N., Olkhov A.A., Yakovleva M.A., Teleshev A.T., Akatov V.S. Biodegradiruyemyy material s vklyucheniyem tsito-statika dlya zameshcheniya defektov kostnoy tkani. Aktualnyye voprosy biologicheskoy fiziki i khimii. BFFKh-2017: Ma-terialy XII mezhdunarodnoy nauchno-tekhnicheskoy konferentsii. g. Sevastopol. 2-6 oktyabrya 2017 g. Sevastopol: Seva-stopolskiy gos. un.-t. 2017.
    S. 402–404. (in Russian).
  6. Gorshenev V.N. Smesheniye rastvorov biodegradiruyemykh polimerov v usloviyakh ultrazvukovogo dispergirovaniya i mik-rovolnovogo SVCh-nagreva. Khimicheskaya Fizika. 2019. T. 38 (2). S. 71–75. (in Russian).
  7. Gorshenev V.N. Sposoby formirovaniya poristykh kaltsiy-fosfatnykh polimernykh kompozitov. Khimicheskaya Fizika. 2019. T. 38 (1).
    S. 1–8. (in Russian).
  8. Burlakova E.B. Osobennosti deystviya sverkhmalykh doz biologicheski aktivnykh veshchestv i fizicheskikh faktorov nizkoy intensivnosti. Rossiyskiy Khimicheskiy Zhurnal. 1999. T. XLIII (5). S. 3–11. (in Russian).
  9. Blyumenfeld L.A. Ponyatiye konstruktsii v biologicheskoy fizike. K voprosu o mekhanizme deystviya sverkhmalykh doz., Rossiyskiy Khimicheskiy Zhurnal. 1999. T. XLIII (5). S.15-20. (in Russian).
  10. Sb. materialov Mezhdunarodnoy konferentsii molodykh uchenykh i VIII shkoly im. akademika N.M. Emanuelya "Okisleniye. okislitelnyy stress. antioksidanty". Moskva. 28–30 oktyabrya 2019 g. (in Russian).
  11. Sb. materialov IV Vserossiyskoy nauchnoy konferentsii s mezhdunarodnym uchastiyem «Svobodnyye radikaly. antioksi-danty i stareniye». g. Astrakhan. Rossiya. 11–12 Noyabrya 2021 g. (in Russian).
  12. Oksengendler G.I. Yady i protivoyadiye. L.: Nauka. 1982. S. 192. (in Russian).
  13. Falalyeyeva M., Tsyryuk O.I., Chyizhanska N.V., Zharova V.P. The influence of melanin isolated from antarctic yeasts on cortisol blood level of rats in conditions of stress action. Ukrainian Antarctic Journal. 2009. V. 8. P. 391–394.
  14. Mossé I.B., Kostrova L.N., Dubovik B.V., Plotnokova S.I., Molofeĭ V.P. Effect of melanin on mutagenic activity of chronic irradiation and adaptive response in mice. Radiats. Biol. Radioecol. 1999. V. 39 (2–3). P. 329–333.
  15. Aung P.P., Mutyambizi K.K., Danialan R., Doina I., Prieto V.G. Differential diagnosis of heavily pigmented melanocytic lesions: challenges and diagnostic approach. J. Clin. Pathol. 2015. V. 68(12). P. 963–970.
  16. Ushakova N., Dontsov A., Sakina N., Bastrakov A., Ostrovsky M. Antioxidative Properties of Melanins and Ommochromes from Black Soldier Fly Hermetia illucens. Biomolecules. 2019. V. 9 (9). P. 408–408.
  17. Koroteyev M.P., Pozdeyev A.O., Koroteyev A.M., Kaziyev G.Z., Teleshev A.T., Ofitserov E.N. Khimicheskaya modifikatsiya di-gidrokvertsetina (taksifolina) i biologicheskaya aktivnost ego proizvodnykh. Butlerovskiye soobshcheniya. 2014. T. 39 (10).
    S. 94–120. (in Russian).
  18. Porebska-Budny M., Sakina N.L., Stepien K.B., Dontsov A.E., Wilczok T. Antioxidative activity of synthetic melanins. Cardiolipin liposome model. Biochim. Biophys. Acta. 1992. V. 1116. P. 11–16. DOI: 10.1016/0304-4165(92)90121-a
  19. Teselkin Yu.O., Babenkova I.V., Lyubitskiy O.B., Klebanov G.I., Vladimirov Yu.A. Izmereniye antioksidantnoy aktivno-sti plazmy krovi v sisteme gemoglobin – peroksid vodoroda – lyuminol. Voprosy meditsinskoy khimii. 1997. T. 43. S. 87–92. (in Russian).
Date of receipt: 13.10.2022
Approved after review: 17.10.2022
Accepted for publication: 25.10.2022