350 rub
Journal Technologies of Living Systems №1 for 2022 г.
Article in number:
Nanobacteria: genuine structure and place in the Universe
Type of article: overview article
DOI: https://doi.org/10.18127/j20700997-202201-08
UDC: 573.3, 573.7, 573.52
Authors:

A.V. Galchenko1,2, E.N. Terekhina1

1 Peoples’ Friendship University of Russia (Moscow, Russia)

2 Center for Biotic Medicine (Moscow, Russia)

Abstract:

Background. The term «nanobacteria» was introduced in 1990 after the detection of nanosize bacteria-like structures in tavertines. Similar objects were found in Antarctica on a meteorite, presumably originating from Mars. Nucleic acids, in particular 16S rRNA, were often found in such «organisms». Further studies have shown that "nanobacteria" could be the cause of a number of diseases in humans.

Aim of the study. The main purpose was to highlight the history of the study of «nanobacteria»; to present research findings that allow to understand the structure of these objects; to describe their properties based on the current data; to bring arguments "pro et contra" the attribution of "nanobacteria" to bacteria or to living objects at all.

Results. In 2008, the «nanobacteria» structure was finally deciphered. They turned out to be nanoparticles consisting of protein – fetuin-A and apatite, nucleic acid traces in previous researches were considered to be contamination. After that, it was offered to reject the term «nanobacteria» for the word «nanone». Nanones are formed in biological mediums in case of optimal fetuin-A/calcium ions ratio. In the environment of a multicellular organism, nanones can cause an infection process, which leads to tissue calcification.

Significance. The discovered facts allow us to return to reasoning about how «alive» such objects are. Nanones are incapable of maintaining a constant inner medium as well as of reproduction. Nevertheless, they are self-organizing structures that are able to grow and form agglomerates. In a similar way, an incomplete set of «life attributes» can be observed in other structures, starting with Oparin-Haldane coacervate drops and Fox microspheres or prions, ending with viruses and even some cellular organisms, for example, Chlamydia spp. or Rickettsia spp. Such blurry borders between the living and non-living matters make us reflect about the definition of life itself and about what we want to find on other planets when searching for «traces of life».

Pages: 63-72
For citation

Galchenko A.V., Terekhina E.N. Nanobacteria: genuine structure and place in the Universe. Technologies of Living Systems. 2022.
V. 19. № 1. P. 63-73. DOI: https://doi.org/10.18127/j20700997-202201-08

References
  1. Torrella F., Morita R.Y.Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic bacteria in seawater. Appl. Environ. Microbiol. 1981. V. 41. № 2. P. 518–527.
  2. Folk R.L. SEM Imaging of Bacteria and Nannobacteria in Carbonate Sediments and Rocks. SEPM J. Sediment. Res. 1993. V. 63.
    № 5. P. 990–999.
  3. Patent №  US-5135851-A. USA. 1992.
  4. Ciftcioglu N., Kuronen I., Akerman K., Hiltunen E., Laukkanen J.,Kajander E.O. A New Potential Threat in Antigen and Antibody Products: Nanobacteria. Vaccines. 1997. V. 97. P. 99–103.
  5. Gill P. Nanocarriers, nanovaccines, and nanobacteria as nanobiotechnological concerns in modern vaccines. Sci. Iran. 2013. V. 20. № 3. P. 2003–2013.
  6. McKay D.S., Gibson E.K., Thomas-Keprta K.L., Vali H., Romanek C.S., Clemett S.J., Chillier X.D.F., Maechling C.R., Zare R.N. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001. Science. 1996. V. 273. № 5277.
    P. 924–930.
  7. Turner G., Knott S.F., Ash R.D., Gilmour J.D.Ar-Ar chronology of the Martian meteorite ALH84001: evidence for the timing of the early bombardment of Mars. Geochim. Cosmochim. Acta. 1997. V. 61. № 18. P. 3835–3850.
  8. Ciftcioglu N., Kajander E.O. Growth factors for nanobacteria. Instr., Meth., and Miss. Astrobio. II. 1999. V. 3755. P. 113–119.
  9. Demirdöğen B.C. Potential role of calcifying nanoparticles in the etiology of multiple sclerosis. Med. hypotheses. 2019. V. 128.
    P. 25–27.
  10. Majidpour A., Rasouli S., Sardarabadi H. The First Identification of Nanobacteria-Like Structures in Vascular Plaques of Atherosclerosis Patients in Iran, Archives of Clinical. Med. Hypotheses. 2019. V. 14. № 4. P. 1–5.
  11. Qian B., Pokhrel G., Wang Q., Liu J. Establishment of a male Wistar rat model of nanobacteria-induced kidney stones. Trop. Jю Pharm. 2019. V. 18. № 5. P. 1061–1068.
  12. Dorrell S. Nanobacteria linked to kidney disease. Molec. Med. today. 1999. V. 5. P. 373.
  13. Hjelle J.T., Miller-Hjelle M.A., Poxton I.R. Endotoxin and nanobacteria in polycystic kidney disease. Kidn. Intern. 2000. V. 57.
    № 6. P. 2360–2374.
  14. Kajander E.O., Ciftcioglu N.,Miller-Hjelle M.A., Hjelle J.T. Nanobacteria: controversial pathogens in nephrolithiasis and polycystic kidney disease. Curr. Opin. in Nephrol. and Hyperten. 2001. V. 10. № 3. P. 445–452.
  15. Sommer A.P., Kajander E.O. Nanobacteria-induced kidney stone formation: Novel paradigm based on the FERMIC mode. Cryst. Grow. & des. 2002. V. 2. № 6. P. 563–565.
  16. Kajander E.O., Ciftcioglu N., Aho K. Characteristics of nanobacteria and their possible role in stone formation. Urol. Res. 2003. V. 31. № 2. P. 47–54.
  17. Zeng J.F., Zhang W., Jiang H.W., Ling J.Q. Isolation, cultivation and initial identification of Nanobacteria from dental pulp stone. Chin. J. of Stomat. 2006. V. 41. № 8. P. 498–501.
  18. Li W.F., Xiong T., Fang H., Zhang N.J. Effect of nanobacterial infection on the expression of serum biomarkers in patients with rheumatoid arthritis. J. Hainan Med. 2018. V. 24. № 19. P. 42–45.
  19. Shi Q., Lu R., Yu Q., Zhu R., Tu X. Research on pathogenesis of arthritis by Nanobacterial infection. Chin. J. Health. 2013. V. 4. P.
  20. Miller V.M., Rodgers G., Charlesworth J.A. Evidence of nanobacterial-like structures in calcified human arteries and cardiac valves. Americ. J. Physiol.-Heart and Circul. Physiology. 2004. V. 287. № 3. P. 1115–1124.
  21. Kajander E.O., Çiftçioglu N. Nanobacteria: an alternative mechanism for pathogenic intra-and extracellular calcification and stone formation. PNAS. 1998. V. 95. № 14. P. 8274–8279.
  22. Kajander E.O., Çiftçioglu N. Interaction of nanobacteria with cultured mammalian cells. Pathophysiology. 1998. V. 4. P. 259–270.
  23. Kajander E.O., Bjorklund M. Mineralization by nanobacteria. Instr., Meth., and Miss. Astrobio. 1998. V. 3441. P. 86–94.
  24. Akerman K.K., Kuikka J.T., Ciftcioglu N.Radiolabeling and in vivo distribution of nanobacteria in rabbits. Meth., and Miss. Astrobio. 1997. V. 3111. P. 436–442.
  25. Cisar J.O., Xu D.Q., Thompson J. An alternative interpretation of nanobacteria-induced biomineralization. PNAS. 2000. V. 97.
    № 21. P. 11511–11515.
  26. Kajander E.O., Ciftcioglu N., Aho K., Garcia-Cuerpo E. Characteristics of nanobacteria and their possible role in stone formation. Urol. res. 2003. V. 31. P. 47–54.
  27. Raoult D., Drancourt M., Azza S., Nappez C. Nanobacteria are mineralo fetuin complexes. PLOS plospathogens. 2008. V. 4. № 2.
    P. 0001–0008.
  28. Zhang Q.-H., Shen X.-C., Zhou Z.-S., Chen Z.-W., Lu G.-S., Song B. Decreased nanobacteria levels and symptoms of nanobacteria-associated interstitial cystitis/painful bladder syndrome after tetracycline treatment. Intern. Urogynecol. J. 2009. V. 21. P. 103–109.
  29. Jahnen-Dechent W., Heiss A., Schäfer C., Ketteler M., Towler D.A. Fetuin-A Regulation of Calcified Matrix Metabolism. Circulation Res. 2011. V. 108. P. 1494–1509.
  30. Ketteler M., Bongartz P., Westenfeld R. Association of low fetuin-A (AHSG) concentrations in serum with cardiovascular mortality in patients on dialysis: a cross-sectional study. The lancet. 2003. V. 361. P. 827–833.
  31. Wu C.Y., Martel J., Young D., Young J.D. Fetuin-A/albumin-mineral complexes resembling serum calcium granules and putative nanobacteria: demonstration of a dual inhibition-seeding concept. Plos One. 2009. V. 4. №  11. P. 1–40.
  32. Heiss A., Pipich V., Jahnen-Dechent W., Schwahn D. Fetuin-A is a mineral carrier protein: small angle neutron scattering provides new insight on fetuin-A controlled calcification inhibition. Biophysical J. 2010. V. 99. P. 3989–3995.
  33. Bode W., Engh R., Musil D., Thiele U., Huber R., Karshikov A., Brzin J., Kos J., Turk V. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 1988. V. 7. №  8. P. 2593–2599.
  34. Serre L., Verbree E.C., Dauter Z., Stuitje A.R., Derewenda Z.S. The Escherichia coli malonyl-CoA:acyl carrier protein transacylase at 1.5-A resolution. Crystal structure of a fatty acid synthase component. The J. Bio. Chem. 1995. V. 270. P. 12961–12964.
  35. Sharma O.P. Nanobacteria – Not life forms but nano-particulate nidi for calcification. Ind. j microbio. 2007. V. 47. № 1. P. 92.
  36. Martel J., Peng H.H., Young D., Wu C.Y., Young J.D. Of nanobacteria, nanoparticles, biofilms and their role in health and disease: facts, fancy and future. Nanomedicine. 2014. V. 9. № 4. P. 483–499.
  37. Jerman I. What Nanobacteria and Nanovesicles May Tell Us about the Origin of Life?.Open Access Library J. 2017. V. 4. № 1.
    P. 1–13.
  38. Engels. F. Dialectic of nature. M.: Publishing house of political literature. 1975. 352 p.
  39. Volkenshtein M.V. Molecules and life. M.: Science, 1965. 485 p.
  40. Lyapunov A.A. About cybernetic issues of biology. M.: Science. 1972. 264 p.
  41. Ferracin A., Panichelli E., Benassi M., Nallo A.D., Steindler C. Self-organizing ability and living systems. Biosystems. 1978. V. 10. № 4. P. 307–317.
  42. Franklin M. H. The way of the cell: molecules, organisms, and the order of life. NY.: Oxford university press, 2003. 320 p.
  43. Marcel E., Dinger D., Gascoigne J., Mattick S. The evolution of RNAs with multiple functions. Biochimie. 2011. V. 93. № 11.
    P. 2013–2018.
  44. Ipsen J.H., Mouritsen O.G., Bloom M. Relationships between lipid membrane area, hydrophobic thickness, and acyl-chain orientational order. The effects of cholesterol. Biophys. Soc. 1990. V. 57. P. 405–412.
  45. Dreher-Lesnick S.M., Ceraul S.M., Rahman M.S., Azad A.F. Genome-wide screen for temperature-regulated genes of the obligate intracellular bacterium, Rickettsia typhi. BMC Microbiology. 2008. V. 8. № 61. P. 1–12.
  46. Schmitz-Esser S., Linka N., Collingro A., Beier C.L., Neuhaus H.E., Wagner M., Horn M. ATP/ADP translocases: a common feature of obligate intracellular amoebal symbionts related to Chlamydiae and Rickettsiae. Americ. Soc. Microbio. 2004. V. 186. № 3.
    P. 683–691.
  47. Forterre P. To be or not to be alive: How recent discoveries challenge the traditional definitions of viruses and life. Stud. Hist. Philos. Biol. Biomed. Sci. 2016. V. 59. P. 100–108.
  48. Fraser P.E. Prions and Prion-like Proteins. The J. of Bio Chem. 2014. V. 289. P. 19839–19840.
Date of receipt: 09.09.2021
Approved after review: 02.11.2021
Accepted for publication: 25.12.2021