350 rub
Journal Technologies of Living Systems №4 for 2021 г.
Article in number:
Liquid biopsy as a tool for tumor growth and metastasis formation control
Type of article: overview article
DOI: https://doi.org/10.18127/j20700997-202104-02
UDC: 616-006.04
Authors:

M. Jain1, L.A. Nekrasova2, O.A. Meshcheriakov3, A.A. Shichanina4, L.M. Samokhodskaya5

1, 3-5 Lomonosov Moscow State University (Moscow, Russia)

2 Specialized Educational Scientific Center Novosibirsk State University (Novosibirsk, Russia)

1, 5 Medical Research and Educational Center of Lomonosov Moscow State University (Moscow, Russia)

Abstract:

Liquid biopsy is a modern approach for the measurement of tumor derivatives in biological fluids, such as circulating tumor DNA, exosomal tumor DNA, circulating tumor cells, and tumor-educated platelets. This non-invasive technology is characterized by certain advantages over traditional biopsy for tumor diagnosis, as well as over various visualization techniques for treatment response monitoring. Currently, a plethora of diagnostic systems for liquid biopsy is developed, which are based on immunological methods, nextgeneration sequencing technologies, and digital polymerase chain reaction. The possibility of their implementation in the evaluation of treatment response and post-resection relapse are actively studied. However, the potential of liquid biopsy to control and detect tumor growth and metastasis formation in patients with stable oncological disease is rarely considered. Thus, this review was dedicated to this topic. 

Among available biomarkers for liquid biopsy, exosomal and circulating tumor DNA are the most promising, regarding tumor volume detection, as circulating tumor cells and tumor-educated platelets are rarely seen in the absence of metastases, hence, their ability to detect growth of primary tumors is limited. Currently, there are few studies dedicated to the correlation of circulating tumor DNA (which is preferred over its exosomal analog due to less preanalytical requirements) with the tumor volume, and their results are unsatisfying. Spearman’s correlation coefficients are ranging from 0.32 to 0.54, which highlights its weak to moderate correlation strength.

One of the main reasons of these disappointing results is the fact that commonly used visualization techniques for tumor volume assessment are characterized by significant intra- and interobserver variability, as well as by inability to detect distant scattered metastases. Additionally, the means to present the results of circulating tumor DNA levels are contradictory. Thus, the relative approach (tumor DNA fraction, rate, frequency) might be distorted by an increase in circulating DNA from regular cells, which are damaged as the tumor grows, whereas the absolute approach is usually undesired due to DNA isolation inconsistency. Finally, tumors are known for their genetic heterogeneity, hence, it is hard to secure that exactly all malignant cells are carrying the studied genetic or epigenetic alteration, which is used to differ tumor DNA from the rest.

Despite several technical and biological difficulties which impede the ability of liquid biopsy to control the progression of the stable oncological disease, this approach remains to be a promising alternative to visualization techniques. As circulating DNA does not only reflect the quantity of malignant cells in the organism, but also carries essential information regarding tumor genetic status, which is crucial for certain clinical decisions.

Pages: 21-33
For citation

Джайн М., Некрасова Л.А., Мещеряков О.А., Шичанина А.А., Самоходская Л.М. Жидкостная биопсия как инструмент контроля роста и метастазирования опухоли // Технологии живых систем. 2021. T. 18. № 4. С. 21−33. DOI: https://doi.org/10.18127/ j20700997-202104-02

References
  1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: a cancer journal for clinicians. 2021. V. 3(71). P. 209–249. DOI:10.3322/caac.21660
  2. Loud J.T., Murphy J. Cancer Screening and Early Detection in the 21(st) Century. Seminars in oncology nursing. 2017. V. 2(33). P. 121–128. DOI:10.1016/j.soncn.2017.02.002
  3. Blumen H., Fitch K., Polkus V. Comparison of Treatment Costs for Breast Cancer, by Tumor Stage and Type of Service. American health & drug benefits. 2016. V. 1(9). P. 23–32. DOI:10.1371/journal.pone.0207993
  4. Amin M.B., Greene F.L., Edge S.B., Compton C.C., Gershenwald J.E., Brookland R.K., Meyer L., Gress D.M., Byrd D.R., Winchester D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA: a cancer journal for clinicians. 2017. V. 2(67). P. 93–99. DOI:10.3322/caac.21388
  5. Catalona W.J. Prostate Cancer Screening. The Medical clinics of North America. 2018. V. 2(102). P. 199–214. DOI:10.1016/j.mcna.2017.11.001
  6. Helvie M.A., Bevers T.B. Screening Mammography for Average-Risk Women: The Controversy and NCCN’s Position. Journal of the National Comprehensive Cancer Network : JNCCN. 2018. V. 11(16). P. 1398–1404. DOI:10.6004/jnccn.2018.7081
  7. Pham T.T., Liney G.P., Wong K., Barton M.B. Functional MRI for quantitative treatment response prediction in locally advanced  rectal cancer. The British journal of radiology. 2017. V. 1072(90). P. 20151078. DOI:10.1259/bjr.20151078
  8. Hayano K., Ohira G., Hirata A., Aoyagi T., Imanishi S., Tochigi T., Hanaoka T., Shuto K., Matsubara H. Imaging biomarkers for the treatment of esophageal cancer. World journal of gastroenterology. 2019. V. 24(25). P. 3021–3029. DOI:10.3748/wjg.v25.i24.3021
  9. Yoon S.H., Kim K.W., Goo J.M., Kim D.-W., Hahn S. Observer variability in RECIST-based tumour burden measurements: a metaanalysis. European journal of cancer (Oxford, England : 1990). 2016. (53). P. 5–15. DOI:10.1016/j.ejca.2015.10.014
  10. Zhu Y., Zhang H., Chen N., Hao J., Jin H., Ma X. Diagnostic value of various liquid biopsy methods for pancreatic cancer: A  systematic review and meta-analysis. Medicine. 2020. V. 3(99). P. e18581. DOI:10.1097/MD.0000000000018581
  11. Massihnia D., Pizzutilo E.G., Amatu A., Tosi F., Ghezzi S., Bencardino K., Di Masi P., Righetti E., Patelli G., Scaglione F., Vanzulli A., Siena S., Sartore-Bianchi A. Liquid biopsy for rectal cancer: A systematic review. Cancer treatment reviews. 2019. (79). P. 101893. DOI:10.1016/j.ctrv.2019.101893
  12. Matsushita D., Arigami T., Okubo K., Sasaki K., Noda M., Kita Y., Mori S., Uenosono Y., Ohtsuka T., Natsugoe S. The Diagnostic and Prognostic Value of a Liquid Biopsy for Esophageal Cancer: A Systematic Review and Meta-Analysis. Cancers. 2020. V. 10(12). DOI:10.3390/cancers12103070
  13. Mlika M., Dziri C., Zorgati M.M., Ben Khelil M., Mezni F. Liquid Biopsy as Surrogate to Tissue in Lung Cancer for Molecular Profiling: A Meta-Analysis. Current respiratory medicine reviews. 2018. V. 1(14). P. 48–60. DOI:10.2174/1573398X14666180430144452
  14. Ashworth T.R. A Case of Cancer in Which Cells Similar to Those in the Tumours Were Seen in the Blood after Death. The Medical Journal of Australia. 1869. (14). P. 146–147.
  15. Poulet G., Massias J., Taly V. Liquid Biopsy: General Concepts. Acta Cytologica. 2019. V. 6(63). P. 449–455. DOI:10.1159/000499337 16. Paoletti C., Hayes D.F. Circulating Tumor Cells. Advances in experimental medicine and biology. 2016. (882). P. 235–258. DOI:10.1007/978-3-319-22909-6_10
  16. Chen L., Bode A.M., Dong Z. Circulating Tumor Cells: Moving Biological Insights into Detection. Theranostics. 2017. V. 10(7). P. 2606– 2619. DOI:10.7150/thno.18588
  17. In ‘t Veld S.G.J.G., Wurdinger T. Tumor-educated platelets. Blood. 2019. V. 22(133). P. 2359–2364. DOI:10.1182/BLOOD-2018-12852830
  18. Trousseau A. Lectures on clinical medicineLindsay & Blakiston. 1873.
  19. Billroth T. Lectures on surgical pathology and therapeutics: a handbook for students and practitioners. 1878.
  20. Newman P.J., Gorski J., White G.C., Gidwitz S., Cretney C.J., Aster R.H. Enzymatic amplification of platelet-specific messenger RNA using the polymerase  chain reaction. The Journal of clinical investigation. 1988. V. 2(82). P. 739–743. DOI:10.1172/JCI113656
  21. Weyrich A.S., Dixon D.A., Pabla R., Elstad M.R., McIntyre T.M., Prescott S.M., Zimmerman G.A. Signal-dependent translation of a regulatory protein, Bcl-3, in activated human  platelets. Proceedings of the National Academy of Sciences of the United States of America. 1998. V. 10(95). P. 5556–5561. DOI:10.1073/pnas.95.10.5556
  22. Labelle M., Begum S., Hynes R.O. Direct signaling between platelets and cancer cells induces an  epithelial-mesenchymal-like transition and promotes metastasis. Cancer cell. 2011. V. 5(20). P. 576–590. DOI:10.1016/j.ccr.2011.09.009
  23. Labelle M., Begum S., Hynes R.O. Platelets guide the formation of early metastatic niches. Proceedings of the National Academy of Sciences of the United States of America. 2014. V. 30(111). P. E3053-61. DOI:10.1073/pnas.1411082111
  24. Calverley D.C., Phang T.L., Choudhury Q.G., Gao B., Oton A.B., Weyant M.J., Geraci M.W. Significant downregulation of platelet gene expression in metastatic lung cancer. Clinical and translational science. 2010. V. 5(3). P. 227–232. DOI:10.1111/j.17528062.2010.00226.x
  25. Best M.G., Sol N., In ’t Veld S.G.J.G., Vancura A., Muller M., Niemeijer A.-L.N., Fejes A.V., Tjon Kon Fat L.-A., Huis In ’t Veld A.E., Leurs C., Le Large T.Y., Meijer L.L., Kooi I.E., Rustenburg F., Schellen P., Verschueren H., Post E., Wedekind L.E., Bracht J., Esenkbrink M., Wils L., Favaro F., Schoonhoven J.D., Tannous J., Meijers-Heijboer H., Kazemier G., Giovannetti E., Reijneveld J.C., Idema S., Killestein J., Heger M., de Jager S.C., Urbanus R.T., Hoefer I.E., Pasterkamp G., Mannhalter C., Gomez-Arroyo J., Bogaard H.-J., Noske D.P., Vandertop W.P., van den Broek D., Ylstra B., Nilsson R.J.A., Wesseling P., Karachaliou N., Rosell R., Lee-Lewandrowski E., Lewandrowski K.B., Tannous B.A., de Langen A.J., Smit E.F., van den Heuvel M.M., Wurdinger T. Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using  Tumor-Educated Platelets. Cancer cell. 2017. V. 2(32). P. 238-252.e9. DOI:10.1016/j.ccell.2017.07.004 
  26. Mandel P., Metais P. [Nuclear Acids In Human Blood Plasma]. Comptes rendus des seances de la Societe de biologie et de ses filiales. 1948. V. 3–4(142). P. 241–243.
  27. Leon S.A., Shapiro B., Sklaroff D.M., Yaros M.J. Free DNA in the serum of cancer patients and the effect of therapy. Cancer research. 1977. V. 3(37). P. 646–650.
  28. Kustanovich A., Schwartz R., Peretz T., Grinshpun A. Life and death of circulating cell-free DNA. Cancer Biology & Therapy. 2019. V. 8(20). P. 1057. DOI:10.1080/15384047.2019.1598759
  29. Tate J.G., Bamford S., Jubb H.C., Sondka Z., Beare D.M., Bindal N., Boutselakis H., Cole C.G., Creatore C., Dawson E., Fish P., Harsha B., Hathaway C., Jupe S.C., Kok C.Y., Noble K., Ponting L., Ramshaw C.C., Rye C.E., Speedy H.E., Stefancsik R., Thompson S.L., Wang S., Ward S., Campbell P.J., Forbes S.A. COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Research. 2019. V. D1(47). P. D941–D947. DOI:10.1093/nar/gky1015
  30. Tomczak K., Czerwińska P., Wiznerowicz M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Wspolczesna Onkologia. 2015. V. 1A(1A). P. A68–A77. DOI:10.5114/wo.2014.47136
  31. Horn S., Figl A., Rachakonda P.S., Fischer C., Sucker A., Gast A., Kadel S., Moll I., Nagore E., Hemminki K., Schadendorf D., Kumar R. TERT promoter mutations in familial and sporadic melanoma. Science. 2013. V. 6122(339). P. 959–961. DOI:10.1126/science.1230062
  32. Koch A., Joosten S.C., Feng Z., de Ruijter T.C., Draht M.X., Melotte V., Smits K.M., Veeck J., Herman J.G., Van Neste L., Van Criekinge W., De Meyer T., van Engeland M. Analysis of DNA methylation in cancer: location revisited. Nature reviews. Clinical oncology. 2018. V. 7(15). P. 459–466. DOI:10.1038/s41571-018-0004-4
  33. Taylor S.C., Laperriere G., Germain H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: from variable nonsense to publication quality data. Scientific Reports 2017 7:1. 2017. V. 1(7). P. 1–8. DOI:10.1038/s41598-017-02217-x
  34. Raskolnikov D., Brown B., Holt S.K., Ball A.L., Lotan Y., Strope S., Schroeck F., Ullman R., Lipman R., Smith A.B., Gore J.L. Reduction of Pain during Flexible Cystoscopy: A Systematic Review and Meta-Analysis. The Journal of urology. 2019. V. 6(202). P. 1136–1142. DOI:10.1097/JU.0000000000000399
  35. Schwartz L.H., Litière S., de Vries E., Ford R., Gwyther S., Mandrekar S., Shankar L., Bogaerts J., Chen A., Dancey J., Hayes W., Hodi F.S., Hoekstra O.S., Huang E.P., Lin N., Liu Y., Therasse P., Wolchok J.D., Seymour L. RECIST 1.1-Update and clarification: From the RECIST committee. European journal of cancer (Oxford, England : 1990). 2016. (62). P. 132–137. DOI:10.1016/j.ejca.2016.03.081
  36. Petzel M.Q.B., Hoffman L. Nutrition Implications for Long-Term Survivors of Pancreatic Cancer Surgery. Nutrition in clinical practice : official publication of the American Society for Parenteral and Enteral Nutrition. 2017. V. 5(32). P. 588–598. DOI:10.1177/0884533617722929
  37. Kilgour E., Rothwell D.G., Brady G., Dive C. Liquid Biopsy-Based Biomarkers of Treatment Response and Resistance. Cancer cell. 2020. V. 4(37). P. 485–495. DOI:10.1016/j.ccell.2020.03.012.
  38. Schreuer M., Jansen Y., Planken S., Chevolet I., Seremet T., Kruse V., Neyns B. Combination of dabrafenib plus trametinib for BRAF and MEK inhibitor pretreated  patients with advanced BRAF(V600)-mutant melanoma: an open-label, single arm, dual-centre, phase 2 clinical trial. The Lancet. Oncology. 2017. V. 4(18). P. 464–472. DOI:10.1016/S1470-2045(17)30171-7
  39. Ho G.Y.F., Wang T., Kwok H.-H., Rasul R., Peila R., Guzman M., Ip M.S.M., Lam D.C.L. Longitudinal multi-gene panel assessment of circulating tumor DNA revealed tumor  burden and molecular characteristics along treatment course of non-small cell lung cancer. Translational lung cancer research. 2020. V. 5(9). P. 1873–1884. DOI:10.21037/tlcr-20-675
  40. Quéreux G., Herbreteau G., Knol A.-C., Vallée A., Khammari A., Théoleyre S., Saint-Jean M., Dréno B., Denis M.G. Efficient treatment of a metastatic melanoma patient with a combination of BRAF and MEK inhibitors based on circulating tumor DNA analysis: a case report. BMC Research Notes. 2017. V. 1(10). P. 320. DOI:10.1186/s13104-017-2650-5
  41. Tie J., Kinde I., Wang Y., Wong H.L., Roebert J., Christie M., Tacey M., Wong R., Singh M., Karapetis C.S., Desai J., Tran B., Strausberg R.L., Diaz L.A.J., Papadopoulos N., Kinzler K.W., Vogelstein B., Gibbs P. Circulating tumor DNA as an early marker of therapeutic response in patients with  metastatic colorectal cancer. Annals of oncology : official journal of the European Society for Medical Oncology. 2015. V. 8(26). P. 1715–1722. DOI:10.1093/annonc/mdv177
  42. Lam V., Li L., Wang J., Tran H., Rinsurongkawong W., Lanman R., Lewis J., Roth J., Swisher S., Papadimitrakopoulou V., Lee J., Zhang J., Heymach J. Characteristics of Lung Cancer Cell-Free Tumor DNA (CfDNA) Shedding and Correlation with Tumor Burden as Measured by RECIST. Journal of Thoracic Oncology. 2017. V. 11(12). P. S1761. DOI:10.1016/J.JTHO.2017.09.362
  43. Seremet T., Jansen Y., Planken S., Njimi H., Delaunoy M., El Housni H., Awada G., Schwarze J.K., Keyaerts M., Everaert H., Lienard D., Del Marmol V., Heimann P., Neyns B. Undetectable circulating tumor DNA (ctDNA) levels correlate with favorable outcome in metastatic melanoma patients treated with anti-PD1 therapy. Journal of Translational Medicine 2019 17:1. 2019. V. 1(17). P. 1–13. DOI:10.1186/S12967-019-2051-8
  44. Strijker M., Soer E.C., Pastena M. de, Creemers A., Balduzzi A., Beagan J.J., Busch O.R., Delden O.M. van, Halfwerk H., Hooft J.E. van, Lienden K.P. van, Marchegiani G., Meijer S.L., Noesel C.J. van, Reinten R.J., Roos E., Schokker S., Verheij J., Vijver M.J. van de, Waasdorp C., Wilmink J.W., Ylstra B., Besselink M.G., Bijlsma M.F., Dijk F., Laarhoven H.W. van. Circulating tumor DNA quantity is related to tumor volume and both predict survival in metastatic pancreatic ductal adenocarcinoma. International Journal of Cancer. 2020. V. 5(146). P. 1445–1456. DOI:10.1002/IJC.32586
  45. Lee S.M., Park C.M., Paeng J.C., Im H.J., Goo J.M., Lee H.-J., Kang C.H., Kim Y.W., Kim J.I. Accuracy and predictive features of FDGPET/CT and CT for diagnosis of lymph node  metastasis of T1 non-small-cell lung cancer manifesting as a subsolid nodule. European radiology. 2012. V. 7(22). P. 1556–1563. DOI:10.1007/s00330-012-2395-4
  46. Lampignano R., Neumann M., Weber S., Kloten V., Herdean A., Voss T., Groelz D., Babayan A., Tibbesma M., Schlumpberger M., Chemi F., Rothwell D.G., Wikman H., Galizzi J.-P., Riise Bergheim I., Russnes H., Mussolin B., Bonin S., Voigt C., Musa H., Pinzani P., Lianidou E., Brady G., Speicher M.R., Pantel K., Betsou F., Schuuring E., Kubista M., Ammerlaan W., Sprenger-Haussels M., Schlange T., Heitzer E. Multicenter Evaluation of Circulating Cell-Free DNA Extraction and Downstream Analyses for the Development of Standardized (Pre)analytical Work Flows. Clinical Chemistry. 2020. V. 1(66). P. 149–160. DOI:10.1373/CLINCHEM.2019.306837
  47. Shaw K.J., Thain L., Docker P.T., Dyer C.E., Greenman J., Greenway G.M., Haswell S.J. The use of carrier RNA to enhance DNA extraction from microfluidic-based silica monoliths. Analytica Chimica Acta. 2009. V. 1–2(652). P. 231–233. DOI:10.1016/J.ACA.2009.03.038
  48. De Vlaminck I. The Proportion of Donor-Specific Cell-Free DNA in Blood as a Marker of Transplant Rejection: Not an Absolute. Clinical chemistry. 2020. V. 10(66). P. 1257–1258. DOI:10.1093/clinchem/hvaa199
  49. Potter M., Newport E., Morten K.J. The Warburg effect: 80 years on. Biochemical Society Transactions. 2016. V. 5(44). P. 1499. DOI:10.1042/BST20160094
  50. Meng W., Hao Y., He C., Li L., Zhu G. Exosome-orchestrated hypoxic tumor microenvironment. Molecular Cancer. 2019. V. 1(18). DOI:10.1186/S12943-019-0982-6
  51. Fittall M.W., Van Loo P. Translating insights into tumor evolution to clinical practice: promises and challenges. Genome Medicine 2019 11:1. 2019. V. 1(11). P. 1–14. DOI:10.1186/S13073-019-0632-Z
  52. Bond C.E., Whitehall V.L.J. How the BRAF V600E Mutation Defines a Distinct Subgroup of Colorectal Cancer: Molecular and Clinical Implications. Gastroenterology Research and Practice. 2018. (2018). DOI:10.1155/2018/9250757
  53. Al-Obaidy K., Eble J., Cheng L., Nassiri M., Williamson S., Idrees M., Grignon D. Recurrent kras mutation is an early event in the development of papillary renal neoplasm with reverse polarity. Modern Pathology. 2020. V. 3(33). P. 1157–1164. DOI:10.1038/s41379019-0362-1
  54. McMahon K.W., Karunasena E., Ahuja N. The roles of DNA methylation in the stages of cancer. Cancer journal (Sudbury, Mass.). 2017. V. 5(23). P. 257. DOI:10.1097/PPO.0000000000000279
  55. Cole A.J., Zhu Y., Dwight T., Yu B., Dickson K.-A., Gard G.B., Maidens J., Valmadre S., Gill A.J., Clifton-Bligh R., Marsh D.J. Comprehensive analyses of somatic TP53 mutation in tumors with variable mutant allele frequency. Scientific Data 2017 4:1. 2017. V. 1(4). P. 1–8. DOI: 10.1038/sdata.2017.120
Date of receipt: 12.10.2021
Approved after review: 14.10.2021
Accepted for publication: 22.10.2021