Journal Technologies of Living Systems №2 for 2021 г.
Article in number:
Implementation of the multiparameter biofeedback method using a portable device based on a microcontroller network
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700997-202102-09
UDC: 606+004.3
Authors:

F.H. Dadashev¹, A.R. Allahverdiev², K.G. Dadasheva³, K.I. Abdullaev4

1,4 National Aviation Academy (Baku, Azerbaijan)

2,3 Institute of Physiology A.I. Karaeva ANAS (Baku, Azerbaijan)

Abstract:

This article presents the principles of design and operation of a portable device based on a network of microcontrollers for implementing the BioFeedBack multiparameter method. As a network architecture was proposed to use principles theory of functional systems P.K. Anokhina. The algorithm for implementing the multi-parameter BioFeedBack, at base the functioning of the biotechnical system (BTS), is based on the solution of multi-criteria task. In this case, the task of the BTS is solved stepwise, allowing to remove maximum indeterminacy related to the individual qualities of the test subject, thereby to get as close as possible to the "desired state". As a general constructive solution of the problem that underlies multicriteria Biofeedback, use of synergistic principles is advised. Herewith, using the principles of vector optimization facilitates the self-organization (parametric self-tuning) of control algorithm. In this case, the use of the theory of a functional system conceptually and constructively is beneficial, as a result, the decomposition of the target objectives of the BTS allows to identify the dynamics of a stepwise approach to the "desired state" (selforganizing). The use of the concept of architectonics of the theory of functional systems as the architecture of a network of microcontrollers has advantages for parallelizing processes and for removing in determinacy during corrective actions. Various characteristics of one electrophysiological signal are selected (EEG), as well as indicators of various electrophysiological signals (e.g. ECG, EMG etc.) as a set of parameters identifying a controlled state. The system multiparametric BioFedBack can be used by both a researcher or a doctor for corrective procedures, and the subject himself with the aim of conducting self-regulation.

Pages: 71-75
For citation

Dadashov F.H., Allahverdiyev A.R., Dadashova K.G., Abdullaev K.I. Implementation of the multiparameter biofeedback method using a portable device based on a microcontroller network. Technologies of Living Systems. 2021. V. 18. № 2. Р. 71–76. DOI: https://doi.org/10.18127/j20700997-202102-09 (in Russian).

References
  1. Kiroy V.N., Lazurenko D.M., Shepelev I.E. Neirotekhnologii: neiro-BOS i interfeis “mozg-kompjuter”. Rostov-na-Donu: Izd-vo Yuzhnogo Federal’nogo Universiteta. 2017. 244 s (in Russian).
  2. Soroko S.I., Turbachev V.V. Nejrofiziologicheskie i psikhofiziologicheskie osnovy adaptivnogo bioupravleniya. S.-Peterburg: Politekhnika servis. 2010. 607 s. (in Russian).
  3. Birbaumer N., Murguialday A.R., Weber C., Montoya P. Neurofeedback and brain–computer interface: clinical applications. International review of neurobiology. 2009. V. 86. P. 107–117.
  4. Wyckoff S., Birbaumer N. Neurofeedback and Brain–Computer Interfaces. The Handbook of Behavioral Medicine. Oxford, UK: John Wiley & Sons, Ltd. 2014. Р. 275–312.
  5. Wolpaw J., Wolpaw E.W. Brain–computer interfaces: principles and practice. Oxford University Press. 2012.
  6. Adamchuk A.V., Skomorokhov A.A. Polifunkcional’nyj mul’tiparametricheskiy reabilitacionnyj kompleks dlya funkcional’nogo bioupravleniya. Medicinskij alfavit. Bol’nica. 2009. № 3. S. 24–29 (in Russian).
  7. Allakhverdiev A.R., Dadashev F.G., Dadasheva K.G. Mul’tiparametricheskaya obratnaya svyaz’ i samoorganizaciya nejrodinamicheskikh processov. Mezhdunarodnyj zhurnal prikladnykh i fundamental’nykh issledovanij. 2019. № 7. S. 9–13 (in Russian).
  8. Akhutin V.M., Pershin N.N., Pozharov A.V. i dr. Biotekhnicheskie sistemy: teoriya i proektirovanie. Orenburg: Orenburgskij gosudarstvennyj universitet. 2008. 204 s. (in Russian).
  9. Kaplan A.Ya. EEG kak upravlyauschii signal: na puti k biotekhnicheskoy nejrokommunikacii. Bioupravlenie-21: teoriya I praktika. Novosibirsk: Nauka. 2010. S. 7–19 (in Russian).
  10. Novak V., Perfil’eva I.G., Mochkorzh I. Matematicheskie principy nechetkoj logiki. M.: FIZMATLIT. 2006. 352 s. (in Russian).
  11. Anokhin P.K. Uzlovye voprosy teorii funkcional’nykh system. M.: Nauka. 1980. 197 s. (in Russian).
  12. Belov A.V. Mikrokontrollery AVR. Ot azov programmirovaniya do sozdaniya prakticheskikh ustrojstv. M.: Nauka i tekhnika. 2016. 544 s. (in Russian).
  13. Barrett S.F., Pack. D.J. Atmel AVR Microcontroller Primer: Programming and Interfacing. 2007. 194 p.
  14. Allakhverdiev A.R., Dadashev F.G., Dadasheva K.G. Sinergeticheskie principy v upravlenii psikhofiziologicheskimi sostoyaniyami po metodu BOS. Mezhdunarodnyj zhurnal prikladnykh i fundamental’nykh issledovanij. 2017. № 11-2. S. 291–294 (in Russian).
Date of receipt: 15.10.2020
Approved after review: 15.12.2020
Accepted for publication: 15.01.2021