Journal Technologies of Living Systems №2 for 2021 г.
Article in number:
Preparation of the substrate surface of silicon nanowire field-effect transistors to create a biosensor
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700997-202102-08
UDC: 60-7; 57.08
Authors:

A.A. Cheremiskina¹, V.M. Generalov², A.S. Safatov³, G.A. Buryak4, A.L. Aseev5

1–4 Federal State Research Institution State Research Center of Virology and Biotechnology «Vector» Rospotrebnadzor     (Koltsovo, Novosibirsk Region, Russia)

5 Institute of Semiconductor Physics named after A.V. Rzhanov, Siberian Branch of the Russian Academy of Sciences

Novosibirsk State University (Novosibirsk, Russia)

Abstract:

Surface preparation of a biosensor based on a silicon nanowire field-effect transistor is one of the main problems of creating a highly selective and sensitive analytical device. It consists in cleaning the surface from possible numerous organic and inorganic contaminants. Currently, there are a large number of methods of purification, but their choice is still relevant in solving specific problems (for example, in determining the nomenclature of solutions used, the quality of chemical reagents, their concentration, the degree of their own purity). It is obvious, that poorly performed cleaning or incorrectly selected conditions for its implementation, finally, affect the effectiveness of the immobilization of biological material on the surface of the biosensor and its performance indicators as a whole. The goal of this work is to review the literature data on the methods of preparing the substrate surface of silicon nanowire field-effect transistors.

The paper collects and systematizes information concerning the classification of methods for cleaning the surface from organic and inorganic contaminants, options for performing the procedure for immobilizing biological material. Based on the requirements imposed on them, the main advantages and disadvantages are considered. As a result of the analysis, the most popular methods of preparing the surface of the biosensor are noted, according to the authors of this work.

The article presents an opportunity to familiarize the reader with the problem of preparing a biosensor based on a silicon nanowire field-effect transistor, the formulation of unresolved issues in this field of research, as well as the study of existing achievements. The presented review can be used to: develop and create more advanced approaches for cleaning and preparing the substrate surface of silicon nanowire field-effect transistors; evaluate the generalized level of laboratory sample preparation and predict the further development of sample preparation; lecture courses on the problems of biotechnology in the specialty 03.01.06-Biotechnology (including bionanotechnology).

Pages: 62-70
For citation

Cheremiskina A.A., Generalov V.M., Safatov A.S., Buryak G.A. Preparation of the substrate surface of silicon nanowire field-effect transistors to create a biosensor. Technologies of Living Systems. 2021. V. 18. № 2. Р. 62–70. DOI: https://doi.org/10.18127/j20700997202102-08 (in Russian).

References
  1. Ivanov Y., Pleshakova T., Malsagova K., Kurbatov L., Popov V., Glukhov A., Smirnov A., Enikeev D., Potoldykova N., Alekseev B., Dolotkazin D., Kaprin A., Ziborov V., Petrov O., Archakov A. Detection of marker miRNAs, associated with prostate cancer, in plasma using SOI-NW biosensor in direct and inversion modes. Sensor. 2019. V. 19. № 23. P. 5248–5264. 
  2. Mu L., Chang Y., Sawtelle S.D., Wipf M., Duan X., Reed M.A. Silicon Nanowire Field-Effect Transistors – a versatile class of potentiometric nanobiosensors. IEEE Access. 2015. V. 3. P. 287–302.
  3. Prieto-Simon B., Campas M., Marty J.-L. Biomolecule immobilization in biosensor development: tailored strategies based on affinity interactions. Protein and Peptide Letters. 2008. V. 15. № 8. P. 757–763.
  4. Liu Y-C. C., Rieben N., Iversen L., Sorensen B.S., Park J., Nygard J., Martinez K.L. Specific and reversible immobilization of histidinetagged proteins on functionalized silicon nanowires. Nanotechnology. 2010. V. 21. № 24. P. 1–7. 
  5. Syu Y-C., Hsu W-E., Lin C-T. Review—Field-Effect Transistor Biosensing: devices and clinical applications. ECS Journal of Solid State Science and Technology. 2018. V. 7. № 7. P. Q3196–Q3207.
  6. Kuznetsov E.V., Rybachek E.N. Biosensory na kremniyevykh nanoprovolochnykh polevykh tranzistorakh. Innovatsionnaya ekonomika. 2010. № 3. C. 85–90 (in Russian).
  7. Namdari P., Daraee H., Eatemadi A. Recent Advances in Silicon Nanowire Biosensors: Synthesis Methods, Properties, and Applications. Nanoscale Research Letters. 2016. V. 11. P. 406–422.
  8. Schmidt V., Wittemann J.V., Senz S., Gösele U. Silicon nanowires: a review on aspects of their growth and their electrical properties. Advanced materials. 2009. V. 21. P. 2681–2702. 
  9. Sarach O.B. Konspekt lektsiy po distsipline Osnovy tekhnologii elektronnoy komponentnoy bazy. M.: NIU «MEI». 2012. 250 s (in Russian).
  10. Shangereyeva B.A., Murtazaliyev A.I., Shangereyev Yu.P. Sposob ochistki poverkhnosti kremniyevykh plastin dlya izgotovleniya moshchnykh tranzistorov. Innovatsionnaya nauka. 2015. № 11. C. 133–135 (in Russian).
  11. Shmakov M., Parshin V., Smirnov A. Shkola proizvodstva GPIS. Ochistka poverkhnosti plastin i podlozhek. Tekhnologii v elektronnoy promyshlennosti. 2008. № 5. S. 76–80 (in Russian).
  12. Timoshenkov S.P., Kalugin V.V., Prokopyev E.P. Issledovaniye tekhnologii ochistki poverkhnosti plastin kremniya v protsesse izgotovleniya struktur KNI i mikroelektronnykh izdeliy. Mikrosistemnaya tekhnika. 2003. № 1. S. 13–22 (in Russian).
  13. Suvorov A.L., Bogdanovich B.Yu., Zaluzhnyy A.G., Grafutin V.I., Kalugin V.V., Nesterovich A.V., Prokopyev. E.P., Timoshenkov S.P., Chaplygin Yu.A. Tekhnologii struktur KNI. M.: Izd-vo «MIET». 2004. 407 s. (in Russian).
  14. Welch N.G., Scoble J.A., Muir B.W., Pigram P.J. Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases. 2017. V. 12. P. 02D301-1–02D301-13.
  15. Rashid J.I.A., Yusof N.А. The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review. Sensing and Bio-Sensing Research. 2017. V. 16. P. 19–31.
  16. Gao A., Chen S., Wang Y., Li T. Silicon Nanowire Field-effect-transistor-based Biosensor for Biomedical Applications. Sensors and Materials.2018. V. 30. No. 8. Р. 1619–1628.
  17. Lin M.C., Chu C.J., Tsai L.C., Lin H.Y., Wu C.S., Wu Y.P., Wu Y.N., Shieh D.B., Su Y.W., Chen C.D. Control and detection of organosilane polarization on Nanowire Field-Effect Transistors. Nano Letters. 2007. V. 7. № 12. P. 3656–3661.
  18. Presnova G., Presnov D., Krupenin V. Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen. Biosensors and Bioelectronics. 2017. V. 88. P. 283–289. 
  19. Du L., Zou L., Wang Q., Zhao L., Huang L., Wang P., Wu C. A novel biomimetic olfactory cell-based biosensor with DNA-directed sitespecific immobilization of cells on a microelectrode array. Sensors and Actuators B: Chemical. 2015. V. 217. P. 186–192. 
  20. Ansari A., Imoukhuede P. Plenty more room on the glass bottom: Surface functionalization and nanobiotechnology for cell isolation. Nano Research. 2018. V. 11. № 10. P. 5107–5129. 
  21. Moskovitz Y., Srebnik S. Mean-Field Model of Immobilized Enzymes Embedded in a Grafted Polymer Layer. Biophysical Journal. 2005. V. 89. № 1. P. 22–31.
  22. Kozitsina A.N., Svalova T.S., Malysheva N.N., Okhokhonin A.V., Vidrevich M.B., Brainina K.Z. Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis. Biosensors. 2018. V. 8. № 2. P. 1–34.
  23. Obshchaya khimicheskaya tekhnologiya. Teoreticheskiye osnovy khimicheskoy tekhnologii. Pod red. I.P. Mukhlenova. M.: Izd-vo «Vysshaya shkola». 1984. T. 1. 256 s. (in Russian).
  24. Gao Z., Agarwal A., Trigg A.D., Singh N., Fang C., Tung C-H., Fan Y., Buddharaju K.D., Kong J. Silicon nanowire arrays for label-free detection of DNA. Analytical Chemistry. 2007. V. 79. № 9. P. 3291–3297. 
  25. Ivanov Y.D., Pleshakova T.O., Kozlov A.F., Malsagova K.A., Krohin N.V., Shumyantseva V.V., Shumov I.D., Popov V.P., Naumova O.V., Fomin B.I., Nasimov D.A., Aseev A.L, Archakov A.I. SOI nanowire for the high-sensitive detection of HBsAg and a-fetoprotein. Lab on a Chip. 2012. V. 12. № 23. P. 5104–5111.
  26. Sang W.H., Lee S., Hong J., Jang E., Lee T., Koh W-G. Mutiscale substrates based on hydrogel-incorporated silicon nanowires for protein patterning and microarray-based immunoassays. Biosensors and Bioelectronics. 2013. V. 45. P. 129–135.
  27. Kern W. The Evolution of Silicon Wafer Cleaning Technology. Journal of The Electrochemical Society. 1990. V. 137. № 6. P. 1887–1892. 
  28. Celler G.K. Etching of Silicon by the RCA Standard Clean 1. Electrochemical and Solid-State Letters. 2000. V. 3. № 1. P. 47-49.
  29. Goddard J.M., Hotchkiss J.H. Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science. 2007. V. 32. № 7. P. 698–725.
  30. Kroesen G.M.W., Lee H.-J., Moriguchi H., Motomura H. Investigations of the surface chemistry of silicon substrates etched in a RFbiased inductively coupled fluorocarbon plasma using fouriertrans form infrared ellipsometry. Journal of Vacuum Science and Technology A. 1998. V. 16. № 1. P. 225–232.
  31. Shirafuji T., Stoffels W.W., Moriguchi H., Tachibana K. Silicon surfaces treated by CF4, CF4/H2, and CF4/O2 RF plasmas: Study by in situ fourier transform infrared ellipsometry. Journal of Vacuum Science and Technology A. 1997. V. 15. № 2. P. 209–215. 
  32. Syverson D.J. Method and apparatus for controlling simultaneous etching of front and back sides of wafers. United States Patent, no US 4857142, 1989.
  33. Osborne N., Rust W., Laser A. Understanding ion induced damage. Semiconductor European. 2000. V. 22. № 7. P. 21–23.
  34. Bhardwaj T. A Review on Immobilization Techniques of Biosensors. International journal of advanced research in engineering and technology. 2015. V. 6. № 2. P. 36–62.
  35. Pividori M.I., Merkoсi A., Alegret S. Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosensors and Bioelectronics. 2000. V. 15. № 5–6. P. 291–303.
  36. Smet de L.C.P.M., Ullien D., Mescher M., Sudhölteret E.J.R. Organic surface modification of Silicon Nanowire-Based Sensor devices. Nanowires – Implementations and Applications. 2011. P. 267–288.
  37. Vu X.T., Stockmann R., Wolfrum B., Offenhäusser A., Ingebrandt S. Fabrication and application of a microfluidic‐embedded silicon nanowire biosensor chip. Physical status solidi. A. 2010. V. 207. № 4. P. 850–857.
  38. Kusnezow W., Hoheisel J.D. Solid supports for microarray immunoassays. Journal of molecular recognition. 2003. V. 16. P. 165–176. 
  39. Welch N.G., Scoble J.A., Muiret B.W., Pigram P.J. Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases. 2017. V. 12. № 2. P. 1–14. 
  40. Hartmann A., Bock D., Seeger S. One-step immobilization of immunoglobulin G and potential of the method for application in immunosensors. Sensors and Actuators B: Chemical. 1995. V. 28. № 2. P. 143–149.
  41. Zubov V.P., Ivanov A.E., Zhigis L.S., Rapoport E.M., Markvicheva E.A., Lukin Yu.V., Zaytsev S.Yu. Molekulyarnoye konstruirovaniye polimernykh materialov dlya biotekhnologii i meditsiny. Bioorganicheskaya khimiya. 1999. T. 25. № 11. S. 868–880 (in Russian).
  42. Yakovlev A.A. Kross-linkery i ikh ispolzovaniye dlya issledovaniya mezhmolekulyarnykh vzaimodeystviy. Neyrokhimiya. 2009. T. 26. № 2. C. 149–155 (in Russian).
  43. Larsen B.A., Hurst K.M., Ashurst W.R., Isaacs L., Ehrman S.H., English D.S. Mono and dialkoxysilane surface modifi cation of superparamagnetic iron oxide nanoparticles for application as magnetic resonance imaging contrast agents. Materials Research Society. 2012. V. 27. № 14. P. 1846–1852.
  44. Saengdee P., Chaisriratanakul W., Bunjongpru W., Sripumkhai W., Srisuwan A., Jeamsaksiri W., Hruanun C., Poyai A., Promptmas C. Surface modification of silicon dioxide, silicon nitride and titanium oxynitride for lactate dehydrogenase immobilization. Biosensors and Bioelectronics. 2015. V. 67. P. 134–142.
Date of receipt: 15.01.2021
Approved after review: 09.02.2021
Accepted for publication: 15.03.2021