Journal Technologies of Living Systems №5 for 2019 г.
Article in number:
Physical conditions on the early Earth, early Sun, cosmic rays and technologies of the first living systems
Type of article: scientific article
UDC: 52-54, 577.3
Authors:

M.V. Ragulskaya

Ph.D. (Phys.-Math.), Senior Research Scientist, Department of Solar Physics and Solar-Terrestrial Relations, Earth Institute Magnetism and Propagation of Radio Waves n. a. N.V. Pushkov RAS (Moscow, Troitsk) E-mail: ra_mary@mail.ru

Abstract:

The article discusses the physical conditions in the early solar system and on Earth and their impact on the emergence, selection and development of the first living systems. The purpose of the article is a review of the solar, cosmic and galactic factors, as well as the Earth’s magnetic field and other protective shells of our planet in the existence of the biosphere. These factors are usually not taken into account in a purely biological consideration of the origin of life and the development of early ecosystems.

The role of the dynamics of the young Sun, cosmic rays, magnetic fields and other protective shells of the Earth in the formation of the biosphere is considered. The “paradox of the young Sun” and the “geomagnetic paradox”, as well as the ways of their possible solution, are considered. Modern models of the origin of life are discussed, and it is noted that most of them are applicable not only to the Earth, but also to terrestrial planets and planets with an ice-covered surface over the oceans. Experiments on radiation exposure show the possibility of survival of symbiotic bacterial biosystems under the surface of Mars – up to 13 million years (in latent state), in meteorites – up to 3 million years. The selection of a single genetic code, ancient methods of long-term energy storage and adaptive technologies of the first living systems occurred under the influence of space and geophysical factors. It has been hypothesized that energy storage in polyphosphates could ensure the functioning of the primary biosphere in conditions of low luminosity of the young Sun.

Currently, the place of the search for life (in its bacterial form) has expanded significantly. The cradle of life can be both molecular galactic clouds and proto-planetary disks, and exo-planets, and volcanoes and oceans of the Earth, Mars and minor planets – satellites of giant planets, asteroids. Factors that significantly limit the development of life are the intensity of cosmic rays, radiation from the mother star and radiation from gas giant planets such as Jupiter. This question requires further experimental and theoretical study.

Pages: 56-71
References
  1. Ragul'skaya M.V. Solnce i biosfera: milliardy let vmeste. M.: Radiotekhnika. 2019. 144 s. http://www.izmiran.ru/pub/izmiran/Ragulskaya-Sun2019.pdf
  2. Ksanfomaliti L.V., Zelenyj L.M., Parmon V.N., Snytniko V.N. // Uspekhi fizicheskih nauk. 2019. T.189. Vyp. 6. S. 403–432.
  3. Nikitin M. Proiskhozhdenie zhizni: ot tumannosti do kletki. M.: Iz-vo ANF. 2016. 540 s.
  4. Life and the Universe / Ed. Obridko V., Ragulskaya M. Spbyu: BBM. 2017. 333 s. http://www.izmiran.ru/pub/izmiran/Life-n-Universe.pdf
  5. Cheptsov V.S. et al. Survivability of Soil and Permafrost Microbial Communities after Irradiation with Accelerated Electrons under Simulated Martian and Open Space Conditions // Geosciences. 2018. № 8. P. 298–322.
  6. Zavarzin G.A., Kolotilova N.N. Vvedenie v prirodovedcheskuyu mikrobiologiyu: Ucheb. posobie. M.: Knizhnyj dom «Universitet». 2001. 256 s.
  7. Solnechno-zemnaya fizika – sovremennoe sostoyanie i perspektivy // Materialy simpoziuma «Astronomiya–2018. M.: Iz-vo MGU. 281 s. 
  8. McGuire B.A., Carroll P.B., Loomis R.A., Finneran I.A., Jewell Ph.R., Remijan A.J., Blake G.A. Discovery of the interstellarchiralmolecule propylene oxide (CH3CHCH2O) // Science. 2016. V. 352. P. 1449–1484.
  9. Fukue T., Tamura M., Kandori R., Kusakabe N., Hough J.H., Bailey J., Whittet D.C.B., Lucas P.W., Nakajima Ya., Hashimo-to J. Extended High Circular Polarization in the Orion Massive Star Forming Region: Implications for the Origin of Homochi-rality in the Solar System // Orig. Life Evol. Biosph. 2010. V. 40. R. 335–346.
  10. Modica P., Meinert C., de Marcellus P., Nahon L., Meierhenrich U.J. Le Sergeant d'Hendecourt L. Enantiomeric Excesses In-duced in Amino Acids by Ultraviolet Circularly Polarized Light Irradiation of Extraterrestrial Ice Analogs: A Possible Source of AsymmetryforPrebioticChemistry // The Astrophys. J. 2014. V. 788. Article id. 79. P. 11–14.
  11. Klussmann M., Iwamura H., Mathew S.P., Wells D.H., Pandya U., Armstrong A., Blackmond D.G. Thermodynamic control of asymmetric amplification in amino acid catalysis // Nature. 2006. V. 441. P. 621–623.
  12. Tverdislov V.A., Malyshko E.V. O zakonomernostyah spontannogo formirovaniya strukturnyh ierarhij v hiral'nyh sistemah nezhivoj i zhivoj prirody // Uspekhi fizicheskih nauk. 2019. T. 189. № 4. S. 375–385. 
  13. Stovbun S.V., Skoblin A.A., Zanin A.M., Rybin YU.M., Ageev I.M., Tverdislov V.A. Kapleobraznye ob"ekty, okruzhen-nye membranoj, koncentriruyushchie veshchestvo sredy i kommutiruyushchie posredstvom strun, v gomohiral'nyh rastvo-rah // Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Ser. Estestvennye nauki. 2012. № 1. S. 75–81.
  14. Mulkidjan A.Y.. Galperin M.Y. On the origin of life in the Zinc world: 1. Photosynthesizing, porous edifices built of hydro-thermally precipitated  zinc sulfide as cradles of life on Earth // Biology direct. 2009. V. 4. P. 27–66.
  15. Martin W., Rassel M. On origin of biochemistry at an Alkaline Hydrothermal Vent // PTRC. Biological science. 2007. V. 362. № 486. P. 887–925.
  16. Benner S. et al. Is there a common chemical model for life in Universe? // Chemical biology. 2004. V. 8. № 6. P. 672–689.
  17. Weiss B., Kirshchink J. Mars, panspermia and origin life // Palaeontologia electronika. 2001. V. 4. № 2. P. 8–15.
  18. Uord P., Kirshvink D. Novaya istoriya proiskhozhdeniya zhizni na Zemle. SPB: Piter Press. 2016. 463 s.
  19. Batygin K., Laughlin G. Jupiter’s Decisive Role in the Inner Solar System’s Early Evolution. 2015. ArXiv:1503.06945v2 [as-tro-ph.EP]. P. 1–5.
  20. Ragulskaya M. V., Obridko V.N. The sun and the biosphere: the paradoxes of 4 billion years of coexistence // Radiofizika i radioastronomiya. 2017. T. 22. № 4. C. 276–283.
  21. Atri D., Melot A. Cosmic rays and Terrestrial Life: a Brief Review // Astroparticle Physics. 2014. V. 53. P. 186–190.
  22. Mironova I.A. et al. Effects of the solar wind and interplanetary disturbances on the Earth's atmosphere and climate // Journal of Atmospheric and Solar-Terrestrial Physics. 2016. V 149. R. 146–150.
  23. Tarduno et al. A Hadean to Paleoarchean geodynamo recorded by single zircon crystals // Science. 2015. V.349. P. 521–524.
  24. Starchenko S.V., Pushkarev Y.D. Magnetohydrodynamic scaling of geodynamo and planetary protocore concept // Magnetohy-drodynamics. 2013. V.49. № 1. P. 35–42.
  25. Shematovich V.I., Ionov D.E., Lammer H. Heating efficiency in hydrogen-dominated upper atmospheres Astron // Astrophys. 2014. V. 571. A94. P. 1–7. 
  26. Hamano K., Abe Y., Genda H. Emergence of two types of terrestrial planet on solidification of magma ocean // Nature. 2013. № 497(7451).  P. 607–610.
  27. Pipin V.V. Non-linear regimes in mean – field full – sphere dynamo // Monthly Notices Roy. Astron. Soc. 2017. V. 466. № 3. P. 3007.3020.
  28. Pognan Q., Garraffo C., Cohen O., Drake J.J., Kota J. The Solar Wind Environment in Time // The Astrophysical Journal. 2018. V. 856. P. 1–18.
  29. Gurfinkel' YU.I. Ishemicheskaya bolezn' serdca i solnechnaya aktivnost'. M.: El'f-3. 2004. 168 s.
  30. Belisheva N.K., Lammer H. at al. The effect of cosmic rays on biological systems // ASST. 2012. № 8. P. 7–17 (www.astrophys-space-scitrans.net/8/7/2012/doi:10.5194/astra-8-7-2012).
  31. Gromozova E. at al. Cosmic rays as bio-regulator of deep time terrestrial ecosystems // Sun and Geosphere. 2012. № 7(2). P. 117–120.
  32. Ragul’skaya M.V., Rudenchik E.A., Chibisov S.M., Gromozova E.N. Effects of Space Weather on Biomedical Parameters dur-ing the Solar Activity Cycles 23–24 // Bulletin of Experimental Biology and Medicine. June 2015. V. 159. Is. 2. P. 269–272 (http://link.springer.com/article/10.1007/s10517-015-2939-0).
Date of receipt: 20 октября 2018 г.