350 rub
Journal Technologies of Living Systems №2 for 2017 г.
Article in number:
Matrix metalloproteinases and their tissue inhibitors in normal and tumors of the kidney
Authors:
O.I. Kostyleva - Ph.D. (Med.), Senior Research Scientist, Clinical Biochemistry Laboratory, N.N. Blokhin Russian Cancer Research Center, Moscow E-mail: ok_olga68@mail.ru V.V. Mushtenko - Post-graduate Student, Clinical Biochemistry Laboratory, N.N. Blokhin Russian Cancer Research Center, Moscow S.D. Bezanova - Post-graduate Student, Pathology Department, N.N. Blokhin Russian Cancer Research Center, Moscow D.S. Mikhaylenko -Ph.D. (Med.), Senior Research Scientist, Institute of Molecular Medicine, Sechenov First Mos-cow State Medical University Senior Researcher Russia, Moscow N.E. Kushlinskii - Dr.Sc. (Med.), Professor, Member-Correspondent of Russian Academy of Sciences, Head of the Clinical Biochemistry Laboratory, N.N. Blokhin Russian Cancer Research Center, Moscow
Abstract:
A review of the literature is devoted to the role of the system of matrix metalloproteinases and their tissue inhibitors in renal pathology and, in particular, in renal carcinoma. Due to the absence of screening, diagnostic models for early diagnosis, as well as specific monitoring of relapse for renal tumors, the urgent task is the identification of new biomarkers of renal tumor. Recent studies demonstrate the prospects of using the system MMP/TIMP not only as a diagnostic but also a prognostic markers in some renal tumors, as well as to assess the effectiveness of targeting anticancer therapy.
Pages: 4-21
References

 

  1. Sandim V., Pereira D.A., Ornellas A.A., Alves G. Renal cell carcinoma and proteomics // Urol. Int. 2010. V. 84. № 4. P. 373-377.
  2. Mancini V., Battaglia M., Ditonno P., Palazzo S., Lastilla G., Montironi R., Bettocchi C., Cavalcanti E., Ranieri E., Selvaggi F.P. Current insights in renal cell cancer pathology // Urol. Oncol. 2008. V. 26. № 3. P. 225-238.
  3. Davydov M.I., Aksel E.M. Statistika zloka­chest­vennykh novoobrazovanijj v Rossii i stra­nakh SNG v 2012 g. M.: Izd. gruppa RONC. 2014. 63 s.
  4. Banks R.E., Craven R.A., Harnden P., Madaan S., Joyce A., Selby P.J. Key clinical issues in renal cancer: a challenge for proteomics // World J. Urol. 2007. V. 25. № 6. R. 537-556.
  5. Siegel R., Ma J., Zou Z., Jemal A. Cancer statistics, 2014. // CA Cancer J. Clin. 2014. V. 64. № 1.  R. 9-29.
  6. Cohen, H.T., McGovern F.J. Renal-cell carcinoma // N. Engl. J. Med. 2005. V. 353. № 23. P. 2477-2490.
  7. Di Carlo A. Matrix metalloproteinase-2 and -9 and tissue inhibitor of metalloproteinase-1 and -2 in sera and urine of patients with renal carcinoma // Oncol Lett. 2014. V. 7. № 3. P. 621-626.
  8. Gershtejjn E.S., Kushlinskijj N.E. Klinicheskie perspektivy issledovanija associirovannykh s opukholju proteaz i ikh tkanevykh ingibitorov u onkologicheskikh bolnykh // Vestnik RAMN. 2013. № 5. S. 16-27.
  9. Tan R.J., Liu Y. Matrix metalloproteinases in kidney homeostasis and diseases // Am. J. Physiol. Renal Physiol. 2012. V. 302. № 11. R. 1351-1361.
  10. Catania J.M., Chen G., Parrish A.R. Role of matrix metalloproteinases in renal pathophysiologies // Am. J. Physiol. Renal. Physiol. 2007. V. 292. № 3. R. 905-911.
  11. Wasilewska A., Taranta-Janusz K., Zoch-Zwierz W., Rybi-Szumińska A., Kołodziejczyk Z. Role of matrix metalloproteinases (MMP) and their tissue inhibitors (TIMP) in nephrology // Przegl. Lek. 2009. V. 66. № 9. R. 485-490.
  12. Visse R., Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry // Circ. Res. 2003.  V. 92. № 8. R. 827-839.
  13. Nagase H., Visse R., Murphy G. Structure and function of matrix metalloproteinases and TIMPs // Cardiovasc. Res. 2006. V. 69. № 3. R. 562-573.
  14. Mancini A., Di Battista J.A. Transcriptional regulation of matrix metalloprotease gene expression in health and disease // Front. Biosci. 2006. V. 11. P. 423-446.
  15. Fanjul-Fernandez M., Folgueras A.R., Cabrera S., Lopez-Otin C. Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models // Biochim. Biophys. Acta. 2009. V. 1803. № 1. P. 3-19.
  16. Hu K., Yang J., Tanaka S., Gonias S.L., Mars W.M., Liu Y. Tissue-type plasminogen activator acts as a cytokine that triggers intracellular signal transduc­tion and induces matrix metalloprotei­nase-9 gene expression // J. Biol. Chem. 2006. V. 281. № 4.  P. 2120-2127.
  17. Yang J., Shultz R.W., Mars W.M., Wegner R.E., Li Y., Dai C., Nejak K., Liu Y. Disruption of tissue-type plasminogen activator gene in mice reduces renal interstitial fibrosis in obstructive nephropathy // J. Clin. Invest. 2002. V. 110. № 10. P. 1525-1538.
  18. Li H.L., Han L., Chen H.R., Meng F., Liu Q.H., Pan Z.Q., Bai J., Zheng J.N. PinX1 serves as a potential prognostic indicator for clear cell renal cell carcinoma and inhibits its invasion and metastasis by suppressing MMP-2 via NF-kappaB-dependent transcription // Oncotarget. 2015. V. 6. № 25.  P. 21406-21420.
  19. Ramos-DeSimone N., Hahn-Dantona E., Sipley J., Nagase H., French D.L., Quigley J.P. Activation of matrix metalloproteinase-9 (MMP-9) via a conver­ging plasmin/stromelysin-1 cascade enhances tumor cell invasion // J. Biol. Chem. 1999. V. 274. № 19. P. 13066-13076.
  20. Ramnath N., Creaven P.J. Matrix metalloproteinase inhibitors // Curr. Oncol. Rep. 2004. V. 6. № 2.  P. 96-102.
  21. Brew K., Dinakarpandian D., Nagase H. Tissue inhibitors of metalloproteinases: evolution, struc­tu­re and function // Biochim. Biophys. Acta. 2000. V. 1477. № 1-2. P. 267-283.
  22. Baker A.H., Ahonen M., Kahari V.M. Potential applications of tissue inhibitor of metalloproteinase (TIMP) overexpression for cancer gene therapy // Adv. Exp. Med. Biol. 2000. V. 465. P. 469-483.
  23. Hayakawa T., Yamashita K., Tanzawa K., Uchijima E., Iwata K. Growth-promoting activity of tissue inhibitor of metalloproteinases-1 (TIMP-1) for a wide range of cells. A possible new growth factor in serum // FEBS Lett. 1992. V. 298. № 1. P. 29-32.
  24. Stetler-Stevenson W.G. Tissue inhibitors of metalloproteinases in cell signaling: metalloprotei­nase-independent biological activities // Sci. Signal. 2008. V. 1. № 27. P. 6.
  25. Nagase H., Woessner J.F. Jr. Matrix metallo­proteinases // J. Biol. Chem. 1999. V. 274. № 31. P. 21491-21494.
  26. Liu Y. Cellular and molecular mechanisms of renal fibrosis // Nat. Rev. Nephrol. 2011. V. 7. № 12.  P. 684-696.
  27. Kassiri Z., Oudit G.Y., Kandalam V., Awad A., Wang X., Ziou X., Maeda N., Herzenberg A.M., Scholey J.W. Loss of TIMP3 enhances interstitial nephritis and fibrosis // J. Am. Soc. Nephrol. 2009. V. 20. № 6. P. 1223-1235.
  28. Essick E., Sithu S., Dean W., D\'Souza S. Pervanadate-induced shedding of the intercellular adhesion molecule (ICAM)-1 ectodomain is mediated by membrane type-1 matrix metallopro­teinase (MT1-MMP) // Mol. Cell. Biochem. 2008. V. 314. № 1-2.  P. 151-159.
  29. Tarín C., Gomez M., Calvo E., López J.A., Zaragoza C. Endothelial nitric oxide deficiency reduces MMP-13-mediated cleavage of ICAM-1 in vascular endo­thelium: a role in atherosclerosis // Arte­rioscler. Thromb. Vasc. Biol. 2009. V. 29. № 1. P. 27-32.
  30. Cai G., Zhang X., Hong Q., Shao F., Shang X., Fu B., Feng Z., Lin H., Wang J., Shi S., Yin Z., Chen X. Tissue inhibitor of metalloproteinase-1 exacerbated renal interstitial fibrosis through enhancing inflammation // Nephrol. Dial. Transplant. 2008. V. 23. № 6. P. 1861-1875.
  31. Xu X., Jackson P.L., Tanner S., Hardison M.T., Abdul Roda M., Blalock J.E., Gaggar A. A self-propagating matrix metalloprotease-9 (MMP-9) dependent cycle of chronic neutrophilic inflam­mation // PLoS One. 2011. V. 6. № 1. P. 15781.
  32. Hu Y., Ivashkiv L.B. Costimulation of chemokine receptor signaling by matrix metalloproteinase-9 mediates enhanced migration of IFN-alpha dendritic cells // J. Immunol. 2006. V. 176. № 10. P. 6022-6033.
  33. Yen J.H., Khayrullina T., Ganea D. PGE2-induced metalloproteinase-9 is essential for dendritic cell migration // Blood. 2008. V. 111. № 1. P. 260-270.
  34. Gawden-Bone C., Zhou Z., King E., Prescott A., Watts C., Lucocq J. Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP-14 // J. Cell. Sci. 2010. V. 123. Pt 9. P. 1427-1437.
  35. Yang M.X., Qu X., Kong B.H., Lam Q.L., Shao Q.Q., Deng B.P., Ko K.H., Lu L. Membrane type 1-matrix metalloproteinase is involved in the migration of human monocyte-derived dendritic cells // Immunol. Cell. Biol. 2006. V. 84. № 6. P. 557-562.
  36. Li Q., Park P.W., Wilson C.L., Parks W.C. Matrilysin shedding of syndecan-1 regulates chemokine mobi­li­zation and transepithelial efflux of neutro­phils in acute lung injury // Cell. 2002. V. 111. № 5.  P. 635-646.
  37. Swee M., Wilson C.L., Wang Y., McGuire J.K., Parks W.C. Matrix metalloproteinase-7 (matrilysin) controls neutrophil egress by generating chemo­kine gradients // J. Leukoc. Biol. 2008. V. 83.  № 6. P. 1404-1412.
  38. Haro H., Crawford H.C., Fingleton B., Shinomiya K., Spengler D.M., Matrisian L.M. Matrix metal­loproteinase-7-depen­dent release of tumor necrosis factor-alpha in a model of herniated disc resorption // J. Clin. Invest. 2000. V. 105. № 2. P. 143-150.
  39. Manicone A.M., Huizar I., McGuire G.K. Matrilysin (Matrix Metalloproteinase-7) regulates anti-inflam­matory and antifibrotic pulmonary dendritic cells that express CD103 (alpha(E)beta(7)-integrin) // Am. J. Pathol. 2009. V. 175. № 6. P. 2319-2331.
  40. Lu Y., Liu S., Zhang S., Cai G., Jiang H., Su H., Li X., Hong Q., Zhang X., Chen X. Tissue inhibitor of metalloproteinase-1 promotes NIH3T3 fibroblast proliferation by activating p-Akt and cell cycle progression // Mol. Cells. 2011. V. 31.  № 3. P. 225-230.
  41. Perng D.W., Chang K.T., Su K.C., Wu Y.C., Chen C.S., Hsu W.H., Tsai C.M., Lee Y.C. Matrix metal­loprotease-9 induces transforming growth factor-beta(1) production in airway epithelium via activation of epidermal growth factor receptors // Life Sci. 2011. V. 89. № 5-6. P. 204-212.
  42. Bengatta S., Arnould C., Letavernier E., Monge M., de Préneuf H.M., Werb Z., Ronco P., Lelongt B. MMP9 and SCF protect from apoptosis in acute kidney injury // J. Am. Soc. Nephrol. 2009. V. 20. № 4. P. 787-797.
  43. Limb G.A., Matter K., Murphy G., Cambrey A.D., Bishop P.N., Morris G.E., Khaw P.T. Matrix metalloproteinase-1 associates with intracellular organelles and confers resistance to lamin A/C degradation during apoptosis // Am. J. Pathol. 2005. V. 166. № 5. P. 1555-1563.
  44. Kim Y.H., Jung J.C. Suppression of tunicamycin-induced CD44v6 ectodomain shedding and apoptosis is correlated with temporal expression patterns of active ADAM10, MMP-9 and MMP-13 proteins in Caki-2 renal carcinoma cells // Oncol. Rep. 2012. V. 28. № 5. P. 1869-1874.
  45. Lin H., Chen X., Wang J., Yu Z. Inhibition of apoptosis in rat mesangial cells by tissue inhibitor of metalloproteinase-1 // Kidney Int. 2002. V. 62. № 1. P. 60-69.
  46. Si-Tayeb K., Monvoisin A., Mazzocco C., Lepreux S., Decossas M., Cubel G., Taras D., Blanc J.F., Robinson D.R., Rosenbaum J. Matrix metallo­proteinase 3 is present in the cell nucleus and is involved in apoptosis // Am. J. Pathol. 2006.  V. 169. № 4. P. 1390-1401.
  47. Daniel C., Duffield J., Brunner T., Steinmann-Niggli K., Lods N., Marti H.P. Matrix metalloproteinase inhibitors cause cell cycle arrest and apoptosis in glomerular mesangial cells // J. Pharmacol. Exp. Ther. 2001. V. 297. № 1. P. 57-68.
  48. Powell W.C., Fingleton B., Wilson C.L., Boothby M., Matrisian L.M. The metalloproteinase matrilysin proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis // Curr. Biol. 1999. V. 9. № 24. P. 1441-1447.
  49. Cox J.H., Starr A.E., Kappelhoff R., Yan R., Roberts C.R., Overall C.M. Matrix metalloproteinase 8 deficiency in mice exacerbates inflammatory arthritis through delayed neutrophil apoptosis and reduced caspase 11 expression // Arthritis Rheum. 2010. V. 62. № 12. P. 3645-3655.
  50. Gagliano N., Arosio B., Santambrogio D., Balestrieri M.R., Padoani G., Tagliabue J., Masson S., Vergani C., Annoni G. Age-dependent expression of fibrosis-related genes and collagen deposition in rat kidney cortex // J. Gerontol. A Biol. Sci. Med. Sci. 2000. V. 55. № 8. P. 365-372.
  51. Kim H., Oda T., López-Guisa J., Wing D., Edwards D.R., Soloway P.D., Eddy A.A. TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy // J. Am. Soc. Nephrol. 2001. V. 12. № 4. P. 736-748.
  52. Wang X., Zhou Y., Tan R., Xiong M., He W., Fang L., Wen P., Jiang L., Yang J. Mice lacking the matrix metalloproteinase-9 gene reduce renal interstitial fibrosis in obstructive nephropathy // Am. J. Physiol. Renal. Physiol. 2010. V. 299. № 5. P. 973-982.
  53. Guan B.Z., Yan R.L., Huang J.W., Li F.L., Zhong Y.X., Chen Y., Liu F.N., Hu B., Huang S.B., Yin L.H. Activation of G Protein Coupled Estrogen Receptor (GPER) Promotes the Migration of Renal Cell Carcinoma via the PI3K/AKT/MMP-9 Signals // Cell. Adh. Migr. 2015. Jan 14:0. [Epub ahead of print].
  54. Hao S., Shen H., Hou Y., Mars W.M., Liu Y. tPA is a potent mitogen for renal interstitial fibroblasts:  role of beta1 integrin/focal adhesion kinase signaling // Am. J. Pathol. 2010. V. 177. № 3.  P. 1164-1175.
  55. Hu K., Lin L., Tan X., Yang J., Bu G., Mars W.M., Liu Y. tPA protects renal interstitial fibroblasts and myofibroblasts from apoptosis // J. Am. Soc. Nephrol. 2008. V. 19. № 3. P. 503-514.
  56. Hu K., Wu C., Mars W.M., Liu Y. Tissue-type plasminogen activator promotes murine myofibroblast activation through LDL receptor-related protein 1-mediated integrin signaling // J. Clin. Invest. 2007. V. 117. № 12. P. 3821-3832.
  57. Bergers G., Brekken R., McMahon G., Vu T.H., Itoh T., Tamaki K., Tanzawa K., Thorpe P., Itohara S., Werb Z., Hanahan D. Matrix metalloproteinase-9 triggers the angiogenic switch during carcino­genesis // Nat. Cell. Biol. 2000. V. 2. № 10. P. 737-744.
  58. Zhou Z., Apte S.S., Soininen R., Cao R., Baaklini G.Y., Rauser R.W., Wang J., Cao Y., Tryggvason K. Impaired endochondral ossification and angioge­nesis in mice deficient in membrane-type matrix metalloproteinase I // Proc. Natl. Acad. Sci. U S A. 2000. V. 97. № 8. P. 4052-4057.
  59. Wang Z., Juttermann R., Soloway P.D. TIMP-2 is required for efficient activation of proMMP-2 in vivo // J. Biol. Chem. 2000. V. 275. № 34. P. 26411-26415.
  60. Holmbeck K., Bianco P., Yamada S., Birkedal-Hansen H. MT1-MMP: a tethered collagenase // J. Cell. Physiol. 2004. V. 200. № 1. P. 11-19.
  61. Ra H.J., Parks W.C. Control of matrix metalloproteinase catalytic activity // Matrix Biol. 2007. V. 26. № 8. P. 587-596.
  62. Huang S., Van Arsdall M., Tedjarati S., McCarty M., Wu W., Langley R., Fidler I.J. Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice // J. Natl. Cancer Inst. 2002. V. 94. № 15. P. 1134-1142.
  63. Deryugina E.I., Quigley J.P. Pleiotropic roles of matrix metalloproteinases in tumor angiogenesis: contrasting, overlapping and compensatory func­tions // Biochim. Biophys. Acta. 2010. V. 1803.  № 1. P. 103-120.
  64. Huang Q.B., Ma X., Li H.Z., Ai Q., Liu S.W., Zhang Y., Gao Y., Fan Y., Ni D., Wang B.J., Zhang X. Endothelial Delta-like 4 (DLL4) promotes renal cell carcinoma hematogenous metastasis // Oncotarget. 2014. V. 5. № 10. P. 3066-3075.
  65. Hamano Y., Kalluri R. Tumstatin, the NC1 domain of alpha3 chain of type IV collagen, is an endogenous inhibitor of pathological angiogenesis and suppresses tumor growth // Biochem. Biophys. Res. Commun. 2005. V. 333. № 2. P. 292-298.
  66. Wickstrom S.A., Alitalo K., Keski-Oja J. Endostatin signaling and regulation of endothelial cell-matrix interactions // Adv. Cancer Res. 2005. V. 94.  P. 197-229.
  67. Basile D.P., Fredrich K., Weihrauch D., Hattan N., Chilian W.M. Angiostatin and matrix metallopro­tease expression following ischemic acute renal failure // Am. J. Physiol. Renal Physiol. 2004.  V. 286. № 5. P. 893-902.
  68. Basile D.P., Donohoe D., Roethe K., Osborn J.L. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function // Am. J. Physiol. Renal Physiol. 2001. V. 281. № 5. P. 887-899.
  69. Zhang Y., Wu X.H., Cao G.H., Li S. Relationship between expression of matrix metalloproteinase-9 (MMP-9) and angiogenesis in renal cell carcinoma // Ai Zheng. 2004. V. 23. № 3. P. 326-329.
  70. Liotta L.A., Tryggvason K., Garbisa S., Hart I., Foltz C.M., Shafie S. Metastatic potential correlates with enzymatic degradation of basement membrane collagen // Nature. 1980. V. 284. № 5751. P. 67-68.
  71. Liotta L.A., Rao C.N., Barsky S.H. Tumor invasion and the extracellular matrix // Lab. Invest. 1983. V. 49. № 6. P. 636-649.
  72. Nelson A.R., Fingleton B., Rothenberg M.L., Matrisian L.M. Matrix metalloproteinases: biologic activity and clinical implications // J. Clin. Oncol. 2000. V. 18. № 5. P. 1135-1149.
  73. Gershtein E.S., Kushlinskii N.T. Clinical prospects of tumor-associated proteases and their tissue inhibitors investigation in oncologic patient // Vestn. Ross. Akad. Med. Nauk. 2013. V. 5. P. 16-27.
  74. Deryugina E.I., Quigley J.P. Matrix metalloprotei­nases and tumor metastasis // Cancer Metastasis Rev. 2006. V. 25. № 1. P. 9-34.
  75. Westermarck J., Kahari V.M. Regulation of matrix metalloproteinase expression in tumor invasion // FASEB J. 1999. V. 13. № 8. P. 781-792.
  76. Duffy M.J. Proteases as prognostic markers in cancer // Clin. Cancer Res. 1996. V. 2. № 4.  P. 613-618.
  77. Ma J.J., Kong L.M., Liao C.G., Jiang X., Wang Y., Bao T.Y. Suppression of MMP-9 activity by NDRG2 expression inhibits clear cell renal cell carcinoma invasion // Med. Oncol. 2012. V. 29. № 5.  P. 3306-3313.
  78. Sun G.G., Wei C.D., Jing S.W., Hu W.N. Interactions between filamin A and MMP-9 regulate prolife­ration and invasion in renal cell carcinoma // Asian Pac. J. Cancer. Prev. 2014. V. 15. № 8.  P. 3789-3795.
  79. Tan R.J., Zhou D., Zhou L., Liu Y. Wnt/beta-catenin signaling and kidney fibrosis // Kidney Int. Suppl. (2011). 2014. V. 4. № 1. P. 84-90.
  80. Zhou D., Tan R.J., Zhou L., Li Y., Liu Y. Kidney tubular beta-catenin signaling controls interstitial fibroblast fate via epithelial-mesenchymal commu­ni­cation // Sci. Rep. 2013. V. 3. P. 1878. doi: 10.1038/srep01878.
  81. He W., Tan R.J., Li Y., Wang D., Nie J., Hou F.F., Liu Y. Matrix metalloproteinase-7 as a surrogate marker predicts renal Wnt/beta-catenin activity in CKD // J. Am. Soc. Nephrol. 2012. V. 23. № 2. P. 294-304.
  82. Liang L., Li L., Zeng J., Gao Y., Chen Y.L., Wang Z.Q., Wang X.Y., Chang L.S., He D. Inhibitory effect of silibinin on EGFR signal-induced renal cell carcinoma progression via suppression of the EGFR/MMP-9 signaling pathway // Oncol. Rep. 2012. V. 28. № 3. P. 999-1005.
  83. Lin Y.W., Lee L.M., Lee W.J., Chu C.Y., Tan P., Yang Y.C., Chen W.Y., Yang S.F., Hsiao M., Chien M.H. Melatonin inhibits MMP-9 transactivation and renal cell carcinoma metastasis by suppressing Akt-MAPKs pathway and NF-kappaB DNA-binding activity // J. Pineal Res. 2016. V. 60. № 3. P. 277-290.
  84. Lu H., Cao X., Zhang H., Sun G., Fan G., Chen L., Wang S. Imbalance between MMP-2, 9 and TIMP-1 promote the invasion and metastasis of renal cell carcinoma via SKP2 signaling pathways // Tumour Biol. 2014. V. 35. № 10. P. 9807-9813.
  85. Roomi M.W., Ivanov V., Kalinovsky T., Niedzwiecki A., Rath M. Modulation of human renal cell carcinoma 786-0 MMP-2 and MMP-9 activity by inhibitors and inducers in vitro // Med. Oncol. 2006. V. 23. № 2. P. 245-250.
  86. Sato A., Nagase H., Obinata D., Fujiwara K., Fukuda N., Soma M., Yamaguchi K., Kawata N., Takahashi S. Inhibition of MMP-9 using a pyrrole-imidazole polyamide reduces cell invasion in renal cell carcinoma // Int. J. Oncol. 2013. V. 43. № 5. P. 1441-1446.
  87. Patraki E., Cardillo M.R. Quantitative immunohisto­chemical analysis of matrilysin 1 (MMP-7) in various renal cell carcinoma subtypes // Int. J. Immunopathol. Pharmacol. 2007. V. 20. № 4.  P. 697-705.
  88. Kawata N., Nagane Y., Igarashi T., Hirakata H., Ichinose T., Hachiya T., Takimoto Y., Takahashi S. Strong significant correlation between MMP-9 and systemic symptoms in patients with localized renal cell carcinoma // Urology. 2006. V. 68. № 3. P. 523-527.
  89. Liu Q., Zhang G.W., Zhu C.Y., Wei J.X., Tian X., Li Y., Li X.D. Clinicopatho­logical significance of matrix metalloproteinase 2 protein expression in patients with renal cell carcinoma: A case-control study and meta-analysis. Cancer Biomark. 2016;16(2):281-9.
  90. Cheng H.P., Duan Y.R., Li Y., Li X.D., Zhu C.Y., Chen B.P. Clinicopathological Significance of Matrix Metalloproteinase-2 Protein Expression in Renal Cell Carcinoma Patients // Anal. Quant. Cytopathol. Histpathol. 2015. V. 37. № 6. P. 353-363.
  91. Egeblad M., Werb Z. New functions for the matrix metalloproteinases in cancer progression // Nat. Rev. Cancer. 2002. V. 2. № 3. P. 161-174.
  92. Bjorklund M., Koivunen E. Gelatinase-mediated migration and invasion of cancer cells // Biochim. Biophys. Acta. 2005. V. 1755. № 1. P. 37-69.
  93. Sarkissian G., Fergelot P., Lamy P.J., Patard J.J., Culine S., Jouin P., Rioux-Leclercq N., Darbouret B. Identification of pro-MMP-7 as a serum marker for renal cell carcinoma by use of proteomic analysis // Clin. Chem. 2008. V. 54. № 3. P. 574-581.
  94. Miyake H., Nishikawa M., Tei H., Furukawa J., Harada K., Fujisawa M. Significance of circulating matrix metalloproteinase-9 to tissue inhibitor of metalloproteinases-2 ratio as a predictor of disease progression in patients with metastatic renal cell carcinoma receiving sunitinib // Urol. Oncol. 2014. V. 32. № 5. P. 584-588.
  95. Ramankulov A., Lein M., Johannsen M., Schrader M., Miller K., Jung K. Plasma matrix metallopro­teinase-7 as a metastatic marker and survival predictor in patients with renal cell carcinomas // Cancer Sci. 2008. V. 99. № 6. P. 1188-1194.
  96. Bhuvarahamurthy V., Kristiansen G.O., Johannsen M., Loening S.A., Schnorr D., Jung K., Staack A. In situ gene expression and localization of metallo­proteinases MMP1, MMP2, MMP3, MMP9, and their inhibitors TIMP1 and TIMP2 in human renal cell carcinoma // Oncol. Rep. 2006. V. 15. № 5.  P. 1379-1384.
  97. Kugler A., Hemmerlein B., Thelen P., Kallerhoff M., Radzun H.J., Ringert R.H. Expression of metalloproteinase 2 and 9 and their inhibitors in renal cell carcinoma // J. Urol. 1998. V. 160. № 5. P. 1914-1918.
  98. Sherief M.H., Low S.H., Miura M., Kudo N., Novick A.C., Weimbs T. Matrix metalloproteinase activity in urine of patients with renal cell carcinoma leads to degradation of extracellular matrix proteins: possible use as a screening assay // J. Urol. 2003. V. 169. № 4. P. 1530-1534.
  99. Kominsky S.L., Doucet M., Thorpe M., Weber K.L. MMP-13 is over-expressed in renal cell carcinoma bone metastasis and is induced by TGF-beta1 // Clin. Exp. Metastasis. 2008. V. 25. № 8. P. 865-870.
  100. Hirata H., Okayama N., Naito K., Inoue R., Yoshihiro S., Matsuyama H., Suehiro Y., Hamanaka Y., Hinoda Y. Association of a haplotype of matrix metalloproteinase (MMP)-1 and MMP-3 polymo­rphisms with renal cell carcinoma // Carci­nogenesis. 2004. V. 25. № 12. P. 2379-2384.
  101. Piccoli M.F., Figueira M., Andreoni C., Marumo J.T., Schor N., Bellini M.H. Lack of association between matrix metalloproteinase-1 (MMP-1) promoter polymorphism and risk of renal cell carcinoma // Int. Braz. J. Urol. 2007. V. 33. № 5. P. 622-629.
  102. Zitella A., Gontero P. Re: Lack of association between matrix metalloproteinase-1 (MMP-1) promoter polymorphism and risk of renal cell carcinoma // Int. Braz. J. Urol. 2007. V. 33. № 6. P. 838-839.
  103. Perez-Gracia J.L., Prior C., Guillén-Grima F., Segura V., Gonzalez A., Panizo A., Melero I., Grande-Pulido E., Gurpide A., Gil-Bazo I., Calvo A. Identification of TNF-alpha and MMP-9 as potential baseline predictive serum markers of sunitinib activity in patients with renal cell carcinoma using a human cytokine array // Br. J. Cancer. 2009. V. 101.  № 11. P. 1876-1883.
  104. Motzer R.J., Hutson T.E., Hudes G.R., Figlin R.A., Martini J.F., English P.A., Huang X., Valota O., Williams J.A. Investigation of novel circulating pro­teins, germ line single-nucleotide polymo­rphisms, and molecular tumor markers as potential efficacy biomarkers of first-line sunitinib therapy for advan­ced renal cell carcinoma // Cancer Chemother. Pharmacol. 2014. V. 74. № 4. P. 739-750.
  105. Shariat S.F., Karam J.A., Karakiewicz P.I. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. Global ARCC Trial // N. Engl. J. Med. 2007. V. 356. № 22. P. 2271-2281.
  106. Escudier B., Pluzanska A., Koralewski P., Ravaud A., Bracarda S., Szczylik C., Chevreau C., Filipek M., Melichar B., Bajetta E., Gorbunova V., Bay J.O., Bodrogi I., Jagiello-Gruszfeld A., Moore N. AVOREN Trial investigators Bevacizumab plus interferon  alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial // Lancet. 2007.V. 370. № 9605.  P. 2103-2111.
  107. Motzer R.J., Escudier B., Oudard S., Hutson T.E., Porta C., Bracarda S., Grünwald V., Thompson J.A., Figlin R.A., Hollaender N., Urbanowitz G., Berg W.J., Kay A., Lebwohl D., Ravaud A. RECORD-1 Study Group Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet. 2008. V. 372. № 9637. P. 449-456.
  108. Motzer R.J., Hutson T.E., Tomczak P., Michaelson M.D., Bukowski R.M., Rixe O., Oudard S., Negrier S., Szczylik C., Kim S.T., Chen I., Bycott P.W., Baum C.M., Figlin R.A. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma // N. Engl. J. Med. 2007. V. 356. № 2. P. 115-124.
  109. Perez-Gracia J.L., Gloria Ruiz-Ilundain M., Garcia-Ribas I., Maria Carrasco E. The role of extreme phenotype selection studies in the identification of clinically relevant genotypes in cancer research // Cancer. 2002. V. 95. № 7. P. 1605-1610.