350 rub
Journal Technologies of Living Systems №1 for 2017 г.
Article in number:
Modern views on the compaction of the human embryo in vitro
Authors:
E.V. Kovalskaya - Embryologist, Department of Assistive Reproductive Technology in the Treatment of In-fertility Research Center of Obstetrics, Gynecology and Perinatology (Moscow) E-mail: e_kovalskaya@oparina4.ru A.G. Syrkasheva - Ph.D. (Med.), Research Scientist, ART Department, Research Center for Obstetrics, Gynecology and Perinatology (Moscow) E-mail: anast.syrkasheva@gmail.com A.Yu. Romanov - Clinical Resident, Research Center for Obstetrics, Gynecology and Perinatology (Moscow) E-mail: romanov1553@yandex.ru N.P. Makarova - Ph.D. (Med.), Senior Research Scientist, Department of Assistive Reproductive Technology in the Treatment of Infertility Research Center of Obstetrics, Gynecology and Perinatology (Moscow) E-mail: np_makarova@oparina4.ru N.V. Dolgushina - Dr.Sc. (Med.), Associate Professor, Head of R&D Department, Research Center for Obstetrics, Gynecology and Perinatology (Moscow) E-mail: n_dolgushina@oparina4.ru
Abstract:
The aim of this review was to summarize current data on one of the key stages of early embryogenesis - morula formation. It is known, that morula formation occurs in 72-80 hours after fertilization. But factors influencing this process are still not well established. Blastomeric morphology has no visible differences during first cleavage stages. In mice, embryo compaction begins at the 8-cell stage, in humans - at the 8 and up to 16-cell stage. Morphological sign of compaction is the thickening of individual blastomeres and increase of the contact area between adjacent cells. Extra- and intracellular organization changes include blastomeres polarization, cell-cell contacts formation and cytoskeletal interactions between blastomeres. Intercellular junctions Several types of cell-cell contacts are generated and participate in morula formation: gap, adherence, tight junctions and desmosomes. They play an important role in cell-cell interactions, adhesion and embryo differentiation. Gap junctions in the human embryo may first appear at 4-cell stage as well as later. The building block of gap junction is the connexin protein. Six connexin molecules form connexon and two neighboring cells connexons make an intracellular channel. These transmembrane pores enable interaction between adjacent cells through a transport of metabolites and regulatory molecules. Injection of anti-connexin antibodies in mouse embryos leads to disruption of compaction while maintaining the blastomeres cytokinesis ability. Adherens junctions contain Ca2+-dependent transmembrane glycoprotein called E-cadherin. On the 4th day of development these proteins move into the area of cell-cell contacts. E-cadherin redistribution is either not observed or random when compaction is abnormal or absent. Tight junctions connect adjacent cell membranes. In mice, tight junctions arise at 8-cell stage to provide the tightness be-tween cells and maintain cell polarity. Desmosomes are small disk-shaped contacts, formed by transmembrane molecules (desmocollin and desmoglein), desmo-somes connect the epithelial cells. In human embryos desmosomes begin to appear at 16-cell stage and their number in-creases dramatically during cavitation. Carbohydrate antigens, for example, SSEA-1 can also be involved in the compaction process. Genome activation and epigenetic control Compaction of the 8-cell stage embryo marks the beginning of the blastocyst formation and normally leads to loss of toti-potency of blastomeres, the differentiation of the trophectoderm and the inner cell mass, which is considered an embryonic genome activation by some authors. Compaction of mouse embryos is faster in polyploid embryos, which indirectly indicates the involvement of the embryo genome in the compaction process. Preimplantation embryo development is regulated genetically and epigenetically (gene methylation and histone modifications). Nuclear-cytoplasmic ratio changes during divi-sion cycles can possibly trigger embryo compaction. Factors influencing the process of embryo compaction In vitro embryo development may be affected by the culture medium volume and components, their by-products, the number of embryos cultured in the culture medium, the gases concentrations and the pH of the culture medium. Since some elements of cell-cell contacts are cation-dependent, it is considered, that Ca2+ and Mg2+ ions are necessary for compaction. Morula can be decompacted by placing it in a deionized medium for a few minutes. Morphokinetic data on the embryo compaction Use of time-lapse observation technologies in assisted reproduction demonstrated timeslots for normal embryo development. But these observations vary for different groups of researchers. That is why the issue of premature or slow embryo compaction requires close attention of clinical embryologists.
Pages: 25-35
References

 

  1. Monk M., Adams R., Rinaldi A. Decrease in DNA methylase activity during preimplantation development in the mouse // Development. 1991.  V. 112. № 1. R. 189-192.
  2. Duranthon V., Watson A.J., Lonergan P. Preimplantation embryo programming: Transcription epigenetics, and culture environment // Reproduction. 2008. V. 135. № 2. R. 141-150.
  3. Johnson M.H., Maro B., Takeichi M. The role of cell adhesion in the synchronization and orientation of polarization in 8-cell mouse blastomeres // J. Embryol. Exp. Morphol. 1986 № 93. R. 239-255.
  4. Sozen B., Can A., Demir N. Cell fate regulation during preimplantation development: a view of adhesion-linked molecular interactions // Dev. Biol. 2014. V. 395. № 1. R. 73-83.
  5. Kirkegaard K., Juhl Hindkjaer J., Ingerslev H.J. Human embryonic development after blastomere removal: A time-lapse analysis // Hum Reprod. 2012. V. 27. № 1. R. 97-105.
  6. Fleming T., Papenbrock T., Fesenko I., Hausen P. Assembly of tight junctions during early vertebrate development // Cell. Dev. Biol. 2000.  V. 11. № 4. R. 291-299.
  7. Ducibella T. Changes in cell surface and cortical cytoplasmic organization during early embryogenesis in the preimplantation mouse embryo // J. Cell. Biol. 1977. V. 74. № 1. R. 153-167.
  8. Veeck L.L., Zaninović N. An Atlas of Human Blastocysts // CRC Press. 2004. 286 p.
  9. Dyban A.P. Rannee razvitie mlekopitajushhikh. M.: Nauka. 1988. 228 c.
  10. Pratt H., Ziomek C., Reeve W., Johnson M. Compaction of the mouse embryo: an analysis of its components // J. Embryol. Exp. Morphol. 1982. № 70. R. 113-132.
  11. Macara I.G. Par Proteins: Partners in Polarization // Curr. Biol. 2004. V. 14. № 4. R. R160-R162.
  12. Macara I.G. Parsing the polarity code // Nat. Rev. Mol. Cell Biol. 2004. V. 5. № 3. R. 220-231.
  13. Plusa B. Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo // J. Cell. Sci. 2005. V. 118. № 3. R. 505-515.
  14. Houliston E., Pickering S.J., Maro B. Alternative routes for the establishment of surface polarity during compaction of the mouse embryo // Dev. Biol. 1989. V. 134. № 2. R. 342-350.
  15. Dale B., Gualtieri R., Talevi R., Tosti E., Santella L., Elder K. Intercellular communication in the early human embryo // Mol. Reprod. Dev. 1991. V. 29. № 1. R. 22-28.
  16. Hardy K., Warner A., Winston R. Expression of intercellular junctions during preimplantation development of the human embryo // Mol. Hum. Reprod. 1996. V. 2. № 8. R. 621-632.
  17. Becker D., Leclerc-David C., Warner A. The relationship of gap junctions and compaction in the preimplantation mouse embryo // Development Suppl. 1992. № 116. R. 113-118.
  18. Lee S., Gilula N.B., Warner A.E. Gap junctional communication and compaction during preimplantation stages of mouse development // Cell. 1987. V. 51. № 5. R. 851-860.
  19. Leclerc C., Becker D., Buehr M., Warner A. Low intracellular pH is involved in the early embryonic death of DDK mouse eggs fertilized by alien sperm // Dev. Dyn. 1994. V. 200. № 3. R. 257-267.
  20. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science. 1991.  V. 251(1989). R. 1451-1455.
  21. Küssel-Andermann P., El-Amraoui A., Safieddine S., Nouaille S., Perfettini I., Lecuit M. et al. Vezatin, a novel transmembrane protein, bridges myosin VIIA to the cadherin-catenins complex // EMBO J. 2000. V. 19. № 22. R. 6020-6029.
  22. Bloor D.J., Metcalfe A.D., Rutherford A., Brison D.R., Kimber S.J. Expression of cell adhesion molecules during human preimplantation embryo development // Mol Hum Reprod. 2002. V. 8. № 3. R. 237-245.
  23. Sefton M., Johnson M., Clayton L. Synthesis and phosphorylation of uvomorulin during mouse early development // Development. 1992.  V. 115. № 1. R. 313-318.
  24. Alikani M. Epithelial cadherin distribution in abnormal human pre-implantation embryos // Hum. Reprod. 2005. V. 20. № 12. R. 3369-3375.
  25. Fleming T., McConnell J., Johnson M., Stevenson B. Development of tight junctions de novo in the mouse early embryo: control of assembly of the tight junction-specific protein, ZO-1 // J. Cell Biol. 1989. V. 108. № 4. R. 1407-1418.
  26. Gualtieri R., Santella L., Dale B. Tight junctions and cavitation in the human pre-embryo // Mol. Reprod. Dev. 1992. V. 32. № 1. R. 81-87.
  27. Fleming T., Sheth B., Fesenko I. Cell adhesion in the preimplantation mammalian embryo and its role in trophectoderm differentiation and blastocyst morphogenesis // Front. Biosci. 2001. № 6. R. D1000-D1007.
  28. Stevenson B., Keon B. The tight junction: morphology to molecules // Annu. Rev. Cell Dev. Biol. 1998. № 14. R. 89-109.
  29. Paternot G., Spiessens M., Verstreken D., Van Bauwel J., Debrock S., D-Hooghe T., et al. Is there a link between blastomere contact surfaces of day 3 embryos and live birth rate - // Reprod. Biol. Endocrinol. 2012. № 10. R. 78.
  30. Eggens I., Fenderson B., Toyokuni T., Dean B., Stroud M., Hakomori S. Specific interaction between Lex and Lex determinants. A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells // J. Biol. Chem. 1989. V. 264. № 16. R. 9476-9484.
  31. Hakomori S. Traveling for the glycosphingolipid path. Glycoconj // J. 2001. V. 17. № 7-9.  R. 627-647.
  32. Arkhangelskaja I.B. Osobennosti razvitija in vitro kletochnykh fragmentov, poluchennykh mikrokhirurgicheskim putem iz zigot i pervykh blastomerov myshejj // V sb.: Obshhie zakonomernosti i kontrolirujushhie mekhanizmy rannego ehmbriogeneza mlekopitajushhikh v norme i patologii. 1985. S. 47-50.
  33. Braude P., Bolton V., Moore S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development // Nature. 1988. V. 332. № 6163. R. 459-461.
  34. Hamatani T., Carter M.G., Sharov A. Ko M.S. Dynamics of global gene expression changes during mouse preimplantation development // Dev. Cell. 2004. V. 6. № 1. R. 117-131.
  35. Bell C.E., Calder M.D., Watson A.J. Genomic RNA profiling and the programme controlling preimplantation mammalian development // Mol. Hum. Reprod. 2008. V. 14. № 12. R. 691-701.
  36. Feng Y.L., Gordon J.W. Removal of cytoplasm from one-celled mouse embryos induces early blastocyst formation // J. Exp. Zool. 1997.  V. 277. № 4. R. 345-352.
  37. Goval J.J., Alexandre H. Effect of genistein on the temporal coordination of cleavage and compaction in mouse preimplantation embryos // Eur. J. Morphol. 2000. V. 38. № 2. R. 88-96.
  38. Levy J., Johnson M., Goodall H., Maro B. The timing of compaction: control of a major developmental transition in mouse early embryogenesis // J. Embryol. Exp. Morphol. 1986. № 95.  R. 213-237.
  39. Shi L., Wu J. Epigenetic regulation in mammalian preimplantation embryo development // Reprod. Biol. Endocrinol. 2009. № 7. R. 59.
  40. Santos F., Peters A.H., Otte A.P., Reik W., Dean W. Dynamic chromatin modifications characterise the first cell cycle in mouse embryos // Dev. Biol. 2005. V. 280. № 1. R. 225-236.
  41. Yeo S., Lee K., Han Y., Kang Y. Methylation changes of lysine 9 of histone H3 during preimplantation mouse development // Mol. Cells. 2005. V. 20. № 3. R. 423-428.
  42. Torres-Padilla M.E., Bannister A.J., Hurd P.J., Kouzarides T., Zernicka-Goetz M. Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos // Int. J. Dev. Biol. 2006. V. 50. № 5.  R. 455-461.
  43. Santos F., Hendrich B., Reik W., Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo // Dev. Biol. 2002. V. 241. № 1. R. 172-182.
  44. Fulka H., Mrazek M., Tepla O., Fulka J. DNA methylation pattern in human zygotes and developing embryos // Reproduction. 2004. V. 128.  № 6. R. 703-708.
  45. Tachataki M., Winston R.M.L., Taylor D.M. Quantitative RT-PCR reveals tuberous sclerosis gene, TSC2, mRNA degradation following cryopreservation in the human preimplantation embryo // Mol. Hum. Reprod. 2003. V. 9. № 10. R. 593-601.
  46. Gardner D., Lane M. Ex vivo early embryo development and effects on gene expression and imprinting // Reprod Fertil Dev. 2004. V. 17. № 3. R. 361-370.
  47. Hausburg M.A., Dekrey G.K., Salmen J.J., Pa- lic M.R., Gardiner C.S. Effects of paraquat on development of preimplantation embryos in vivo and in vitro // Reprod. Toxicol. 2005. V. 20.  № 2. R. 239-246.
  48. Edwards L.J., Williams D.A., Gardner D.K. Intracellular pH of the mouse preimplantation embryo: amino acids act as buffers of intracellular pH // Hum. Reprod. 1998. V. 13. № 12. R. 3441-3448.
  49. Johnson L.V. Wheat germ agglutinin induces compaction- and cavitation-like events in two-cell mouse embryos // Dev. Biol. 1986. V. 113. № 1. R. 1-9.
  50. Maro B., Pickering S.J. Microtubules influence compaction in preimplantation mouse embryos // J. Embryol. Exp. Morphol. 1984. № 84.  R. 217-232.
  51. Winkel G.K., Ferguson J.E., Takeichi M., Nuccitelli R. Activation of protein kinase C triggers premature compaction in the four-cell stage mouse embryo // Dev. Biol. 1990. V. 138. № 1. R. 1-15.
  52. Skiadas C.C., Jackson K. V., Racowsky C. Early compaction on day 3 may be associated with in creased implantation potential // Fertil Steril. 2006. V. 86. № 5. R. 1386-1391.
  53. Iwata K.1, Yumoto K., Sugishima M., Mizoguchi C., Kai Y., Iba Y. et al. Analysis of compaction initiation in human embryos by using time-lapse cinematography // J. Assist. Reprod. Genet. 2014. V. 31. № 4. R. 421-426.
  54. Desai N.N., Goldstein J., Rowland D.Y., Goldfarb J.M. Morphological evaluation of human embryos and derivation of an embryo quality scoring system specific for day 3 embryos: a preliminary study // Hum. Reprod. 2000. V. 15. № 10.