350 rub
Journal Technologies of Living Systems №8 for 2016 г.
Article in number:
The role of direct contacts between mesenchymal stromal cells and endo-thelial cells in vascular-like structures formation in vitro
Authors:
N.V. Koptelova - Therapeutist, City clinical hospital № 64 E-mail: koptelovan@gmail.com I.B Beloglazova - Ph.D. (Biol.), Research Scientist, Angiogenesis laboratory, Russian Cardiology Research and Production Complex, Moscow E-mail: irene@cardio.ru E.S. Zubkova - Junior Research Scientist, Russian Cardiology Research and Production Complex, Moscow E-mail: zubkova@cardio.ru O.Y. Sukhareva - Ph.D. (Med.), Leading Research Scientist, Endocrinology Scientific Center, Moscow D.T. Dyikanov - Post-graduate Student, Laboratory Assistant, Faculty of Fundamental Medicine, Lomonosov State University E-mail: danidy@inbox.ru E.I. Ratner - Ph.D. (Biol.), Senior Research Scientist, Russian Cardiology Research and Production Complex, Moscow E-mail: eiratner@gmail.com Z.A. Akopyan - Ph.D. (Med.), Academic Research Secretary, Faculty of Fundamental Medicine, Lomonosov Moscow State University M.V. Shestakova - Dr.Sc. (Med.), Professor, Corresponding Member RAS, Endocrinology Scientific Center, Moscow Y.V. Parfyonova - Dr.Sc. (Med.), Professor, Head of Angiogenesis Laboratory, Russian Cardiology Research and Production Complex; Head of Postgenomic Medical Technology Laboratory, Faculty of Fundamental Medicine, Lomonosov Moscow State University E-mail: veparfyon@mail.ru
Abstract:
The aim of this work is to study the molecular mechanisms of interaction between mesenchymal stromal cells (MSC) with endothelial cells (EC) during the formation of the vasculature. It was found that in co-cultivation of EC with MSC on the pure glass only direct contacts between EC and MSC promote the formation of vascular like structures by EC. Using flow-cytometry it was shown that co-cultivation cells in direct contacts increased urokinase receptor expression on the surface of EC. This increase is responsible for vascular structures formation because it is suppressed in dose dependent manner by the inhibition of urokinase receptor by specific antibodies. Using RT-PCR it was shown that the co-cultivation caused the upregulation of urokinase system genes - urokinase and PAI-1. Cell interaction through connexins is also partly responsible for the vascular like structures formation in co-cultivation of MSC and HUVEC as connexin inhibitors reduced the length of these structures by 25 %.
Pages: 4-13
References

 

  1. Potente M., Gerhardt H., Carmeliet P. Basic and therapeutic aspects of angiogenesis // Cell. 2011. V. 146 (6). P. 873-887.
  2. da Silva Meirelles L, Caplan A.I., Nardi N.B. In search of the in vivo identity of mesenchymal stem cells // Stem Cells. 2008. V. 26 (9). P. 2287-2299.
  3. Kalinina N.I., Sysoeva V.JU., Rubina K.A., Parfenova E.V., Tkachuk V.A. Mezenkhimalnye stvolovye kletki v processakh rosta i reparacii tkanejj // Acta Naturae. 2011. T. 3. № 4. C. 32-39.
  4. Makarevich P.I., Boldyreva M.A., Gluhanyuk E.V., Efimenko A.Y., Dergilev K.V., Shevchenko E.K., Sharonov G.V., Gallinger J.O., Rodina P.A., Sarkisyan S.S., Hu Y.C., Parfyonova Ye.V. Enhanced angiogenesis in ischemic skeletal muscle after transplantation of cell sheets from baculovirus-transduced adipose-derived stromal cells expressing VEGF165 // Stem. Cell Res. Ther. 2015. V. 6. P. 204.
  5. Yeh T.S., Fang Y.H., Lu C.H., Chiu S.C., Yeh C.L., Yen T.C., Parfyonova Ye., Hu Y.C. Baculovirus-transduced, VEGF-expressing adipose-derived stem cell sheet for the treatment of myocardium infarction // Biomaterials. 2014. V. 35(1). P. 174-184.
  6. Shevchenko E.K., Makarevich P.I., Tsokolaeva Z.I., Boldyreva M.A. Sysoeva V.Y., Tkachuk V.A., Parfyonova Ye.V. Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle // J. Transl. Med. 2013. V. 11. P. 138.
  7. Lopatina T., Kalinina N., Karagyaur M., Stambolsky D., Rubina K., Revischin A., Pavlova G., Parfyonova Ye., Tkachuk V. Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo // PLoS One. 2011. V. 6(3). e:17899.
  8. Fayyad-Kazan M., Fayyad-Kazan H., Lagneaux .L, Najar M. The potential of mesenchymal stromal cells in immunotherapy // Immunotherapy. 2016. V. 8(8). P. 839-842.
  9. Traktuev D.O., Parfenova E.V., Tkachuk V.A., March K.L. Stromalnye kletki zhirovojj tkani ? plasticheskijj tip kletok, obladajushhikh vysokim terapevticheskim potencialom // Citologija. 2006. T. 48. № 2. S. 83-94.
  10. Efimenko A., Dzhoyashvili N., Kalinina N., Kochegura T. Akchurin R., Tkachuk V., Parfyonova Ye. Adipose-derived mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential // Stem Cells Transl. Med. 2014. V. 3(1). P. 32-41.
  11. Ishida O., Hagino I., Nagaya N., Shimizu T. Okano T., Sawa Y., Mori H., Yagihara T. Adipose-derived stem cell sheet transplantation therapy in a porcine model of chronic heart failure // Transl. Res. V. 165(5). P. 631-639.
  12. Park I.S., Kang J.A., Kang J., Rhie J.W., Kim S.H. Therapeutic effect of human adipose-derived stromal cells cluster in rat hind-limb ischemia // Anat. Rec. (Hoboken). 2014 V. 297(12). P. 2289-2298.
  13. Clevenger T.N., Luna G., Fisher S.K., Clegg D.O. Strategies for bioengineered scaffolds that support adipose stem cells in regenerative therapies // Regen. Med. 2016. V. 11(6). P. 589-599.
  14. Kapur S.K., Katz A.J. Review of the adipose derived stem cell secretome // Biochimie. 2013. V. 95(12). P. 2222-2228.
  15. Tkachuk V.A., Plekhanova O.S., Beloglazova I.B., Parfenova E.V. Rol multidomennojj struktury urokinazy v reguljacii rosta i remodelirovanija sosudov // Ukrainskijj biokhimicheskijj zhurnal. 2013. T. 85. № 6. S. 18-45
  16. Tkachuk V.A., Plekhanova O.S., Parfyonova Ye.V. Regulation of arterial remodeling and angiogenesis by urokinase-type plasminogen activator // Can. J. Physiol. Pharmacol. 2009. V. 87(4). P. 231-251.
  17. Parfenova E.V., Plekhanova O.S., Tkachuk V.A. Aktivatory plazminogena v remodelirovanii sosudov i angiogeneze // Biokhimija. 2002. T. 67. № 1. S. 139-156.
  18. Beloglazova I.B., Zubkova E.S., Cokolaeva Z.I., Stafeev JU.S. / Dergilev K.V., Ratner E.I., SHestakova M.V., Sukhareva O.JU., Parfenova E.V., Menshikov M.JU. Reguljatornoe vozdejjstvie urokinazy na migraciju, proliferaciju mezenkhimnykh stromalnykh kletok i sekreciju imi matriksnykh metalloproteinaz // Bjulleten ehksperimentalnojj biologii i mediciny. 2016. T. 161. № 6. S. 728-732
  19. Beloglazova I.B., Zubkova E.S., Stambol\'skii D.V., Plekhanova O.S., Men\'shikov M.Y., Akopyan Zh.A., Bibilashvili R.Sh., Parfenova E.V., Tkachuk V.A. Proteolytically inactiverecombinant forms of urokinase suppress migration of endothelial cells // Bull. Exp. Biol. Med. 2014. V. 156. № 6. P. 756-759.
  20. Traktuev D.O., Tsokolaeva Z.I., Shevelev A.A., Talitskiy K.A., Stepanova V.V., Johnstone B.H., Rahmat-Zade T.M., Kapustin A.N., Tkachuk V.A., March K.L., Parfyonova Ye.V. Urokinase gene transfer augments angiogenesis in ischemic skeletal and myocardial muscle // Mol. Ther. 2007. V. 15(11). P.1939-1946.
  21. Rubina K., Kalinina N., Efimenko A., Lopatina T., Melikhova V., Tsokolaeva Z., Sysoeva V., Tkachuk V., Parfyonova Ye. Adipose stromal cells stimulate angiogenesis via promoting progenitor cell differentiation, secretion of angiogenic factors, and enhancing vessel maturation // Tissue Eng. Part A. 2009. V. 15(8). P. 2039-2050.
  22. Zubkova E.S., Beloglazova I.B., Makarevich P.I., Boldyreva M.A., Sukhareva O.Y., Shestakova M.V., Dergilev K.V., Parfyonova Ye.V., Menshikov M.Yu. Regulation of Adipose Tissue Stem Cells Angiogenic Potential by Tumor Necrosis Factor-Alpha // J. Cell. Biochem. 2016. V. 117(1). P. 180-196.
  23. Montuori N., Ragno P. Role of uPA/uPAR in the modulation of angiogenesis// Chem. Immunol. Allergy. 2014. V. 99. P. 105-122.
  24. Breuss J.M., Uhrin P. VEGF-initiated angiogenesis and the uPA/uPAR system // Cell Adh. Migr. 2012. V. 6(6). P. 535-615.
  25. Uhrin P., Breuss J.M. uPAR: a modulator of VEGF-induced angiogenesis // Cell Adh. Migr. 2013. V. 7(1). P. 23-26.
  26. Stepanova V., Jayaraman P.S., Zaitsev S.V., Lebedeva T. Bdeir K., Kershaw R., Holman K.R., Parfyonova Ye.V., Semina E.V., Beloglazova I.B., Tkachuk V.A., Cines D.B. Urokinase-type plasminogen activator (uPA) promotes angiogenesis by attenuating Proline-rich homeodomain protein (PRH) transcription factor activity and de-repressing vascular endothelial growth factor (VEGF) receptor expression // J. Biol. Chem. 2016. V. 241(29). P. 15029-15045.
  27. Rao J.S., Gujrati M., Chetty C. Tumor-associated soluble uPAR-directed endothelial cell motility and tumor angiogenesis // Oncogenesis. 2013. V. 2. e53.
  28. Melzer C., Yang Y., Hass R. Interaction of MSC with tumor cells // Cell Commun. Signal. 2016. V. 14(1). P. 20.
  29. Yamada K., Uchiyama A., Uehara A., Perera B. Ogino S., Yokoyama Y., Takeuchi Y., Udey M.C., Ishikawa O., Motegi S.I. MFG-E8 Drives Melanoma Growth by Stimulating Mesenchymal Stromal Cell-Induced Angiogenesis and M2 Polarization of Tumor-Associated Macrophages // Cancer Res. 2016. V. 76(14).  P. 4283-4292.
  30. Li G.C., Zhang H.W., Zhao Q.C., Sun L.I. Yang J.J., Hong L., Feng F., Cai L. Mesenchymal stem cells promote tu­mor angiogenesis via the action of transforming growth factor β1 // Oncol. Lett. 2016. V. 11(2). P. 1089-1094.