350 rub
Journal Technologies of Living Systems №6 for 2016 г.
Article in number:
Low dose of fluoride influences to free radical oxidation and intracellular protective systems in heart, lung and liver
Authors:
D.A. Alekhina - Post-graduate Student, Laboratory of the Experimental Hygienic Studies of Scientific, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Kemerovo Region, Novokuznetsk A.G. Zhukova - Dr.Sc. (Biol.), Leading Research Scientist, Laboratory of the Experimental Hygienic Studies of Scientific, Research Institute for Complex Problems of Hygiene and Occupational Diseases, Kemerovo Region, Novokuznetsk E-mail: nyura_g@mail.ru T.G. Sazontova - Dr.Sc. (Biol.), Professor, Laboratory of Adaptive Medicine, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University E-mail: yva1950@gmail.com
Abstract:
Free radical oxidation and intracellular protective systems in heart, lung and liver were estimated in experimental model of sodium fluoride action (rats consumed NaF solution, 10 mg/l, during three weeks). Low dose fluoride action at the early period induces tissue specified response which has been realized by means of transcription factor HIF-1α, constitutive and inducible HSP proteins as well as enzymes of antioxidant protection. After 3 weeks of low fluoride action the level of HIF-1α, HSC73, HOx-1 and HOx-2 in heart was increased. HSP72 level increase in 4,4 times on 3 day, but on 6 day and 3 week returned to control values. Antioxidant enzymes (superoxide dismutase and catalase) activity on 3 day was 49 and 15% higher than in control, on 6 day decrease to control value, and after 3 weeks increase to 57 and 32% respectively. This high level of protective proteins is compensatory and essential for both damage effect of hypoxia and free radical oxidation development in myocardium. Indeed, amount of TBARS in heart after 3 weeks of NaF consumption was low at 3 week of experiment. A of low dose fluoride consumption the resistance of membrane structures to free radical oxidation in lung was not changed in compare with control. This compensation took place due to activation of intracellular protective systems: on 3 day of experiment HIF-1α, HSC73, HSP72 and HOx-2 levels increased significantly and was constant up to 3 week. Catalase activity increased to 3 and 6 day of fluoride consumption. In liver, in contrast to heart and lung, free radical oxidation was significantly activated on 3 day of experiment. This is due to the fact that contents of transcription factor HIF-1α, constitutive proteins HSC73, HOx-2 and inducible proteins HSP72, HOx-1 were increase. These protective proteins level and activity of free radical oxidation were decrease to control level after 6 day of experiment. High level of HIF-1α, НОх-1, НОх-2 and HSP72 was observed on 3 week; it was reason why the resistance of liver structures to free radical oxidation remain at control level. Activities of superoxide dismutase and catalase increase during first week of fluoride action and was 1.6 and 1.8 times more on 3 day and 2.6 and 2.0 times more on 6 day, respectively. Thus, on early stages of low dose fluoride consumption we have shown increase level of HIF-1α, HSP72, HSC73, HOx-1, HOx-2 and activity of antioxidant system in heart, lung and liver. Maximal activation of protective systems which characterized predominantly hypoxic component of fluoride action has been shown in liver, stressory component - in heart. Increased level of intracellular protective systems in heart and liver on early stages of fluoride action induces higher resistance of tissue structures to free radical oxidation whereas in lung preserved the resistance at control level. This activation of protective systems may consider like prognostic criteria of damage factor action. Prolongation of this factor attack may induce failure of physiological adaptive body protection and indicates necessity of occasional preventive or therapeutic procedures.
Pages: 49-56
References

 

  1. Agalakova N.I. Vlijanie neorganicheskikh soedinenijj ftora na zhivye organizmy razlichnogo filogeneticheskogo urovnja // ZHurnal ehvoljucionnojj biokhimii i fiziologii. 2011. T. 47. № 5. S. 337-347.
  2. Andreeva L.I. Osobennosti vnutrikletochnogo soderzhanija i funkcionalnaja rol belkov teplovogo shoka semejjstva 70 kDa pri stresse i adaptacii // Tekhnologii zhivykh sistem. 2009. T. 6. № 3. S. 11-17.
  3. Gavriljuk L.A. Vlijanie antioksidantnojj terapii na aktivnost glutationzavisimykh ehnzimov sljuny pacientov s fljuorozom // Klinicheskaja laboratornaja diagnostika. 2007. № 1. S. 22-37.
  4. Zenkov N.K., Menshhikova E.B., Tkachjov V.O. Nekotorye principy i mekhanizmy redoks-reguljacii // Kislorod i antioksidanty. 2009. № 1. S. 3-64.
  5. Karkishhenko N.N. Osnovy biomodelirovanija. M.: Mezhakademicheskoe izd-vo VPK. 2004. 608 s.
  6. Konyk U.V., Gzhegockijj M.R., Kovalenko E.A. i dr. Osobennosti kislorodzavisimogo metabolizma u zhivotnykh s khronicheskojj ftoristojj intoksikaciejj v uslovijakh gipoksiterapii // Hypoxia Med. J. 2001. T. 9. № 1-2. S. 6-8.
  7. Plakhotnik V.N. Ftoridy vokrug nas // Sorosovskijj obrazovatelnyjj zhurnal. 1998. № 2. C. 95-100.
  8. Sazontova T.G., Arkhipenko JU.V. Znachenie balansa prooksidantov i antioksidantov - ravno­znachnykh uchastnikov metabolizma // Patologicheskaja fiziologija i ehksperimentalnaja terapija. 2007. № 1. S. 2-18.
  9. Sazontova T.G., ZHukova A.G., Anchishkina N.A., Arkhipenko JU.V. Faktor transkripcii HIF-lα, belki srochnogo otvetam rezistentnost membrannykh struktur v dinamike posle ostrojj gipoksii// Vestnik RAMN. 2007. № 2. S. 17-25.
  10. Sazontova T.G., Strjapko N.V., Arkhipenko JU.V. Vvedenie giperoksicheskojj komponenty v adaptaciju k gipoksii preduprezhdaet narushenija, vyzvannye dejjstviem toksikantov v malykh dozakh (svobodnoradikalnoe okislenie i belki semejjstva HSP // Bjulleten ehksperimentalnojj biologicheskojj mediciny. 2015. T. 160. № 9. S. 284-288.
  11. Tikhonova N.S., Moskaleva O.S., Margulis B.A., Guzhova I.V. Molekuljarnyjj shaperon HSP70 zashhishhaet kletki nejjroblastomy SK-N-SH ot gipoksicheskogo stressa // Citologija. 2008. T. 50. № 5. S. 467-472.
  12. Turpaev K.T. Aktivnye formy kisloroda i reguljacija ehkspressii genov // Biokhimija. 2002. T. 67. S. 339-352.
  13. CHumakov P.M. Belok r53 i ego universalnye funkcii v mnogokletochnom organizme // Uspekhi biologicheskojj khimii. 2007. № 47. S. 3-52.
  14. SHalina T.I., Vasileva L.S. Obshhie voprosy toksicheskogo dejjstvija ftora // Sibirskijj medicinskijj zhurnal. 2009. № 5. S. 5-9.
  15. Basha M.P., Sujitha N.S. Chronic fluoride toxicity and myocardial damage: antioxidant offered protection in second generation rats // Toxicol. Int. 2011. V. 18. № 2. P. 99-104.
  16. Chandel N.S., Schumacker P.T. Cellular oxygen sensing by mitochondria: old questions, new insight // J. Appl. Physiol. 2000. V. 88. № 5. P. 1880-1889.
  17. Chen Q., Wang Z., Xiong Y. et al. Selenium increases expression of HSP70 and antioxidant enzymes to lesser oxidative damage in fincoal-type fluorosis // J. Toxicol. Sci. 2009. V. 34. P. 399-405.
  18. Fridovich I. Superoxide dismutase // Accounts Chem. Res. 1972. V. 5. P. 321-326.
  19. García-Montalvo E.A., Reyes-Pérez H., Del Razo L.M. Fluoride exposure impairs glucose tolerance via decreased insulin expression and oxidative stress // Toxicology. 2009. V. 263. P. 75-83.
  20. Han F., Takeda K., Ono M. et al. Hypoxemia induces expression of heme oxygenase-1 and heme oxygenase-2 proteins in the mouse myocardium // J. Biochem. 2010. V. 147. № 1. P. 143-151.
  21. Kikugava K., Kojima T., Yamaki S. et al. Interpretation of the thiobarbituric acid reactivity of rat liver and brain homogenates in the presence of ferric ion and ethylenediaminetetraacetic acid // Analyt. Biochem. 1992. V. 202. P. 249-255.
  22. Luck H. Catalase // In: Bergmeyer H.U. (ed). Methods of enzymatic analysis. New York: Verlag-Chemie Academic Press. 1963. P. 885-888.
  23. Maulik N., Engelman R.M., Rouson J.A. et al. Ischemic preconditioning reduces apoptosis by upregulating Anti-death gene Bcl-2 // Circulation. 1999. V. 100 (Suppl 2). P. 369-375.
  24. Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction // Analyt. Biochem. 1979. V. 95. P. 351-358.
  25. Otsuki S., Morshed S.R., Chowdhury S.A. et al. Possible link between glycolysis and apoptosis induced by sodium fluoride // J. Dental Res. 2005. V. 84. P. 919-923.
  26. Sazontova T.G., Arkhipenko Y.V. Intermittent hypoxia in resistance of cardiac membrane structures: role of reactive oxygen species and redox signaling // V kn.: Intermittent Hypoxia: From Molecular Mechanisms to Clinical Applications. 2011. P. 113-150.
  27. Semenza G.L. Perspectives on oxygen sensing // Cell. 1999. V. 98. P. 281-284.
  28. Semenza G.L. HIF1: mediator of physiological and pathophysiological responses to hypoxia // J. Appl. Physiol. 2000. V. 88. P. 1474-1480.
  29. Semenza G.L. Signal transduction to hypoxia-inducible factor 1 // Biochem. Pharmacol. 2002. V. 64. P. 993-998.
  30. Zhukova A.G., Sazontova T.G. Hemeoxygenase: function, regulation, biological role // Hypoxia Med. J. 2004. V. 12. № 3. P. 30-43.
  31. Zhukova A.G., Sazontova T.G. Hypoxia inducible factor-1α: function and biological role // Hypo-xia Med. J. 2005. V. 13. № 3-4.R. 34-41.